题目描述

小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。

输入输出格式

输入格式:

两个正整数 $a$ 和 $b$ ,它们之间用一个空格隔开,表示小凯中金币的面值。

输出格式:

一个正整数 $N$ ,表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。

题解:

我只想说。。。我考试的时候没有想到这茬, 
$a*b-a-b$ 
于是17年NOIP水的不成样子
其实,这道题目是一道数学定理——赛瓦维斯特定理:已知a,b为大于1的正整数,(a,b)=1,则使不定方程$ax+by=C$无负整数解的最大整数$C=ab-a-b$!
证明:
若存在$x,y>=0$满足 $ax+by=ab-a-b$ 则$a(x+1)+b(y+1)=ab$
于是$a|(y+1)$,$b|(x+1)$
($a(x+1)=b(a-y-1)$,有 a,b互质,所以$b|(x+1)$。$a|(y+1)$同理)
又$x+1>=1,y+1>=1$
故$a(x+1)+b(y+1)>=a*b+b*a=2ab$ (因为$b|(x+1)$,所以$b<=x+1$,同理$a<=y+1$)
但是在上述假设中我们知道$a(x+1)+b(y+1)=ab$,$a>=0,b>=0$
所以假设不成立,即不存在$x,y>=0$,满足 $ax+by=ab-a-b$
 
对于任意正整数$C>=ab-a-b+1$,即$C+a+b>=ab+1$
设$C+a+b=ka+m(k>=b,1<=m<=a-1)$
注意到(a,b)=1
由裴蜀定理,知存在$x_0,y_0∈Z$,使得$ax_0+by_0=1$
故存在$x_1,y_1∈Z,-(b-1)<=x_1<=-1$
使得$ax_1+by_1=m$
(解释一下,这里的意思其实是设$-(b-1)<=x_1<=-1$,一定存在整数$y_1$使得$ax_1+by_1=m$成立。原因就是在整数$x_1$的取值中一共有$b-1$个数,$y_1=(m-ax_1)/b$,总是可以找到$x_1$使得$m-ax_1$能被b整除)
显然,$y_1>=1(ax_1<0,m>0,b>0$,因此$y_1>=1$)
于是,取$x=k+x_1-1,y=y_1-1$
注意到$x_1,y_1$的取值范围,得$x,y>=0$
得$ax+by=C$
所以任意$C>=ab-a-b+1$都存在$x,y>=0$,$ax+by=C$
证毕
 

NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)的更多相关文章

  1. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  2. 【比赛】NOIP2017 小凯的疑惑

    找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...

  3. [CSP-S模拟测试]:小奇挖矿2(DP+赛瓦维斯特定理)

    题目背景 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. 题目描述 现在有$m+1$个星球,从左到右标号为$0$到$n$,小奇最初 ...

  4. NOIP2017 小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  5. 题解【洛谷P3951】[NOIP2017]小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  6. luogu2951 noip2017 小凯的疑惑

    在考场上我们可以打表发现规律是 $ ab-a-b $ .下面给出证明(看的网上的). 若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在 \[ x= ...

  7. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  8. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  9. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

随机推荐

  1. java用freemarker实现导出excel

    前几天做了jxl导出excel,现在用freemarker做一下 freemarker导出excel和导出word步骤和是实现方法是相同的. 1.制作excel模板 2.将后缀名改为ftl,放到对应的 ...

  2. MarkDown、Vim双剑合璧

    作为一名软件攻城狮(是的,我从来都以攻城狮自居! 我坚信如今的每一天,都在朝攻城狮迈进.虽然被菜鸟的肉身皮囊裹着,我依然还是怀着攻城狮的内心! 我非常讨厌别人喊我程序猿.虽然这是不争的事实!).... ...

  3. Codeforce 163 A. Substring and Subsequence DP

    A. Substring and Subsequence   One day Polycarpus got hold of two non-empty strings s and t, consist ...

  4. [雅礼NOIP集训 2017] number 解题报告 (组合数+二分)

    题解: 令$S(i)={i+1,i+2,...,i<<1}$,f(i,k)表示S(i)中在二进制下恰好有k个1的数的个数 那么我们有$f(i,k)=\sum_{x=1}^{min(k,p) ...

  5. 在Jquery里格式化Date日期时间数据

    在Jquery里格式化Date日期时间数据: $(function(){ //当前时间格式化yyyy-MM-dd HH:mm:ss alert(timeStamp2String(new Date(). ...

  6. Servlet基础(一)

    JavaEE:企业级开发技术 <一.基础概念>j2ee:jdk1.1--1.4   ----->>    j2ee1.1   1.2   javaee:jdk--5,6,7   ...

  7. .NET深入解析LINQ框架2

    1].开篇介绍 在开始看本篇文章之前先允许我打断一下各位的兴致.其实这篇文章本来是没有打算加“开篇介绍”这一小节的,后来想想还是有必要反馈一下读者的意见.经过前三篇文章的详细讲解,我们基本上对LINQ ...

  8. shell基础编程

    首先要注意的是,Ubuntu里的shell的sh和bash命令是有区别的 如下所示,Ubuntu下的sh指向的dash程序,而bash是dash的增强版,一些bash上能执行的程序在dash上不行 如 ...

  9. 获取鼠标经过处的标签的标签名和id

    <script> var el = window.document.body; // 声明一个变量,默认值为body window.document.body.onmouseover = ...

  10. syn攻击原理与防护措施

    何为syn攻击? 先普及下tcp3次握手的知识,在TCP/IP中,tcp协议提供可靠的socket连接服务,通过3次握手建立可靠连接. tcp3次握手过程: 第一阶段:某终端向服务器发送syn(syn ...