Description

You probably have played the game "Throwing Balls into the Basket". It is a simple game. You have to throw a ball into a basket from a certain distance. One day we (the AIUB ACMMER) were playing the game. But it was slightly
different from the main game. In our game we were N people trying to throw balls into
M identical Baskets. At each turn we all were selecting a basket and trying to throw a ball into it. After the game we saw exactly
S balls were successful. Now you will be given the value of
N and M. For each player probability of throwing a ball into any basket successfully is
P. Assume that there are infinitely many balls and the probability of choosing a basket by any player is
1/M. If multiple people choose a common basket and throw their ball, you can assume that their balls will not conflict, and the probability remains same for getting inside a basket. You have to find the expected number of balls
entered into the baskets after K turns.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing three integers N (1 ≤ N ≤ 16), M (1 ≤ M ≤ 100)
and K (0 ≤ K ≤ 100) and a real number
P (0 ≤ P
≤ 1)
. P contains at most three places after the decimal point.

Output

For each case, print the case number and the expected number of balls. Errors less than
10-6 will be ignored.

Sample Input

2

1 1 1 0.5

1 1 2 0.5

Sample Output

Case 1: 0.5

Case 2: 1.000000


题意:
n个人 m个篮子 每一轮每一个人能够选m个篮子中一个扔球 扔中的概率都是p 求k轮后全部篮子里面球数量的期望值
思路:
依据期望 的定义与篮筐个数无关。由于题目如果互不影响。结果就是N*K*P。
代码:
#include<cstdio>
using namespace std;
int main()
{
int T;
int casex=1;
double N,M,K,P;
double ans;
scanf("%d",&T);
while(T--)
{
scanf("%lf%lf%lf%lf",&N,&M,&K,&P);
ans=N*K*P;
printf("Case %d: %lf\n",casex++,ans);
}
return 0;
}

light oj 1317的更多相关文章

  1. Light OJ 1317 Throwing Balls into the Baskets 概率DP

    n个人 m个篮子 每一轮每一个人能够选m个篮子中一个扔球 扔中的概率都是p 求k轮后全部篮子里面球数量的期望值 依据全期望公式 进行一轮球数量的期望值为dp[1]*1+dp[2]*2+...+dp[ ...

  2. Light OJ 1114 Easily Readable 字典树

    题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...

  3. Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

    题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...

  4. Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖

    标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...

  5. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  6. light oj 1007 Mathematically Hard (欧拉函数)

    题目地址:light oj 1007 第一发欧拉函数. 欧拉函数重要性质: 设a为N的质因数.若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N ...

  7. Light OJ 1406 Assassin`s Creed 状态压缩DP+强连通缩点+最小路径覆盖

    题目来源:Light OJ 1406 Assassin`s Creed 题意:有向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路:最少的的人能够走全然图 明显是最小路径覆盖问题 ...

  8. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  9. Jan's light oj 01--二分搜索篇

    碰到的一般题型:1.准确值二分查找,或者三分查找(类似二次函数的模型). 2.与计算几何相结合答案精度要求比较高的二分查找,有时与圆有关系时需要用到反三角函数利用 角度解题. 3.不好直接求解的一类计 ...

随机推荐

  1. UVALive 5545 Glass Beads

    Glass Beads Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Origin ...

  2. CF16A Flag

    CF16A Flag 题意翻译 题目描述 根据一项新的ISO标准,每一个国家的国旗应该是一个n×m的格子场,其中每个格子最多有10种不同的颜色.并且国旗应该有条纹:旗帜的每一行应包含相同颜色的方块,相 ...

  3. Html 播放 mp4格式视频提示 没有发现支持的视频格式和mime类型

    转自原文 Html 播放 mp4格式视频提示 没有发现支持的视频格式和mime类型 播放mp4格式的时候提示 Html 播放 mp4格式视频提示 没有发现支持的视频格式和mime类型 原因是在IIS中 ...

  4. 代理模式之cglib动态代理

    上一篇博客说了实现InvocationHandler接口的jdk动态代理,还有一种实现动态代理的方式则是:通过继承的方式实现的cglib动态代理. 先在程序中导入cglib的包,cglib-nodep ...

  5. Codeforces Round #311 (Div. 2)题解

    A. Ilya and Diplomas time limit per test 1 second memory limit per test 256 megabytes input standard ...

  6. 一题多解(一) —— list(Python)判空(以及 is 与 == 的区别)

    >> l = [] 1. == >> l == [] True 2. not >> not l True 3. 注意 is 与 == 的区别 >> l ...

  7. win32编程 画图

    void cDefense::DrawAll() { HDC hDc = GetDC(m_hWnd);//获取客户区窗口,如果该值为NULL,GetDC则获整个屏幕的窗口. HDC dcMem = C ...

  8. MySQL日期数据类型和时间类型使用总结

    转自: http://blog.chinaunix.net/space.php?uid=11327712&do=blog&id=32416 MySQL 日期类型:日期格式.所占存储空间 ...

  9. Android VelocityTracker类和Scroller类

    VelocityTracker类:用于跟踪触屏事件的速度,通常使用VelocityTracker的步骤如下: static VelocityTracker obtain():获取一个VelocityT ...

  10. LeetCode 1. Two Sum (c++ stl map)

    题目:https://leetcode.com/problems/two-sum/description/ stl map代码: class Solution { public: vector< ...