pandas深入理解
Pandas是一个Python库,旨在通过“标记”和“关系”数据以完成数据整理工作,库中有两个主要的数据结构Series和DataFrame
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from pandas import Series,DataFrame
In [4]: import matplotlib.pyplot as plt
本文主要说明完成数据整理的几大步骤:
1.数据来源
1)加载数据
2)随机采样
2.数据清洗
0)数据统计(贯穿整个过程)
1)处理缺失值
2)层次化索引
3)类数据库操作(增、删、改、查、连接)
4)离散面元划分
5)重命名轴索引
3.数据转换
1)分组
2)聚合
3)数据可视化
数据来源
1.加载数据
pandas提供了一些将表格型数据读取为DataFrame对象的函数,其中用的比较多的是read_csv和read_table,参数说明如下:
参数 |
说明 |
path | 表示文件位置、URL、文件型对象的字符串 |
sep或delimiter | 用于将行中的各字段进行拆分的字符串或正则表达式 |
head | 用作列名的行号 |
index_col | 用作行索引的列编号或列名 |
skiprows | 需要跳过的行号列表(从0开始) |
na_value | 一组用户替换的值 |
converters | 由列号/列名跟函数之间的映射关系组成的字典 |
chunksize | 文件快的大小 |
举例:
In [2]: result = pd.read_table('C:\Users\HP\Desktop\SEC-DEBIT_0804.txt',sep = '\s+') In [3]: result
Out[3]:
SEC-DEBIT HKD0002481145000001320170227SECURITIES BUY ON 23Feb2017
0 10011142009679 HKD00002192568083002000 NaN NaN NaN
1 20011142009679 HKD00004154719083002000 NaN NaN NaN
2 30011142005538 HKD00000210215083002300 NaN NaN NaN
3 40011142005538 HKD00000140211083002300 NaN NaN NaN
延展:
DataFrame写文件:data.to_csv('*.csv')
Series写文件:data.to_csv('*.csv')
Series读文件:Series.from_csv('*.csv')
2.随机采样
利用numpy.random.permutation函数可以实现对Series和DataFrame的列随机重排序工作
In [18]: df = DataFrame(np.arange(20).reshape(5,4))
In [19]: df
Out[19]:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19 In [20]: sample = np.random.permutation(5)
In [21]: sample
Out[21]: array([0, 1, 4, 2, 3]) In [22]: df.take(sample)
Out[22]:
0 1 2 3
0 0 1 2 3
1 4 5 6 7
4 16 17 18 19
2 8 9 10 11
3 12 13 14 15 In [25]: df.take(np.random.permutation(5)[:3])
Out[25]:
0 1 2 3
2 8 9 10 11
4 16 17 18 19
3 12 13 14 15
数据清洗
0.数据统计
In [31]: df = DataFrame({'A':np.random.randn(5),'B':np.random.randn(5)}) In [32]: df
Out[32]:
A B
0 -0.635732 0.738902
1 -1.100320 0.910203
2 1.503987 -2.030411
3 0.548760 0.228552
4 -2.201917 1.676173 In [33]: df.count() #计算个数
Out[33]:
A 5
B 5
dtype: int64
In [34]: df.min() #最小值
Out[34]:
A -2.201917
B -2.030411
dtype: float64
In [35]: df.max() #最大值
Out[35]:
A 1.503987
B 1.676173
dtype: float64
In [36]: df.idxmin() #最小值的位置
Out[36]:
A 4
B 2
dtype: int64
In [37]: df.idxmax() #最大值的位置
Out[37]:
A 2
B 4
dtype: int64
In [38]: df.sum() #求和
Out[38]:
A -1.885221
B 1.523419
dtype: float64
In [39]: df.mean() #平均数
Out[39]:
A -0.377044
B 0.304684
dtype: float64
In [40]: df.median() #中位数
Out[40]:
A -0.635732
B 0.738902
dtype: float64
In [41]: df.mode() #众数
Out[41]:
Empty DataFrame
Columns: [A, B]
Index: []
In [42]: df.var() #方差
Out[42]:
A 2.078900
B 1.973661
dtype: float64
In [43]: df.std() #标准差
Out[43]:
A 1.441839
B 1.404871
dtype: float64
In [44]: df.mad() #平均绝对偏差
Out[44]:
A 1.122734
B 0.964491
dtype: float64
In [45]: df.skew() #偏度
Out[45]:
A 0.135719
B -1.480080
dtype: float64
In [46]: df.kurt() #峰度
Out[46]:
A -0.878539
B 2.730675
dtype: float64
In [48]: df.quantile(0.25) #25%分位数
Out[48]:
A -1.100320
B 0.228552
dtype: float64
In [49]: df.describe() #描述性统计指标
Out[49]:
A B
count 5.000000 5.000000
mean -0.377044 0.304684
std 1.441839 1.404871
min -2.201917 -2.030411
25% -1.100320 0.228552
50% -0.635732 0.738902
75% 0.548760 0.910203
max 1.503987 1.676173
1.处理缺失值
In [50]: string = Series(['apple','banana','pear',np.nan,'grape']) In [51]: string
Out[51]:
0 apple
1 banana
2 pear
3 NaN
4 grape
dtype: object In [52]: string.isnull() #判断是否为缺失值
Out[52]:
0 False
1 False
2 False
3 True
4 False
dtype: bool In [53]: string.dropna() #过滤缺失值,默认过滤任何含NaN的行
Out[53]:
0 apple
1 banana
2 pear
4 grape
dtype: object In [54]: string.fillna(0) #填充缺失值
Out[54]:
0 apple
1 banana
2 pear
3 0
4 grape
dtype: object In [55]: string.ffill() #向前填充
Out[55]:
0 apple
1 banana
2 pear
3 pear
4 grape
dtype: object In [56]: data = DataFrame([[1. ,6.5,3],[1. ,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,7,9]]) #DataFrame操作同理
In [57]: data
Out[57]:
0 1 2
0 1.0 6.5 3.0
1 1.0 NaN NaN
2 NaN NaN NaN
3 NaN 7.0 9.0
2.层次化索引
In [6]: data = Series(np.random.randn(10),index=[['a','a','a','b','b','b','c','c','d','d'],[1,2,3,1,2,3,1,2,2,3]]) In [7]: data
Out[7]:
a 1 0.386697
2 0.822063
3 0.338441
b 1 0.017249
2 0.880122
3 0.296465
c 1 0.376104
2 -1.309419
d 2 0.512754
3 0.223535
dtype: float64 In [8]: data.index
Out[8]:
MultiIndex(levels=[[u'a', u'b', u'c', u'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]]) In [10]: data['b':'c']
Out[10]:
b 1 0.017249
2 0.880122
3 0.296465
c 1 0.376104
2 -1.309419
dtype: float64 In [11]: data[:,2]
Out[11]:
a 0.822063
b 0.880122
c -1.309419
d 0.512754
dtype: float64 In [12]: data.unstack()
Out[12]:
1 2 3
a 0.386697 0.822063 0.338441
b 0.017249 0.880122 0.296465
c 0.376104 -1.309419 NaN
d NaN 0.512754 0.223535 In [13]: data.unstack().stack()
Out[13]:
a 1 0.386697
2 0.822063
3 0.338441
b 1 0.017249
2 0.880122
3 0.296465
c 1 0.376104
2 -1.309419
d 2 0.512754
3 0.223535
dtype: float64 In [14]: df = DataFrame(np.arange(12).reshape(4,3),index=[['a','a','b','b'],[1,2,1,2]],columns=[['Ohio','Ohio','Colorad
...: o'],['Green','Red','Green']]) In [15]: df
Out[15]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11 In [16]: df.index.names = ['key1','key2']
In [17]: df.columns.names = ['state','color'] In [18]: df
Out[18]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11 In [19]: df['Ohio'] #降维
Out[19]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10 In [20]: df.swaplevel('key1','key2')
Out[20]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11 In [21]: df.sortlevel(1) #key2
Out[21]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
b 1 6 7 8
a 2 3 4 5
b 2 9 10 11 In [22]: df.sortlevel(0) #key1
Out[22]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
3.类sql操作
In [5]: dic = {'Name':['LiuShunxiang','Zhangshan','ryan'],
...: 'Sex':['M','F','F'],
...: 'Age':[27,23,24],
...: 'Height':[165.7,167.2,154],
...: 'Weight':[61,63,41]} In [6]: student = pd.DataFrame(dic)
In [7]: student
Out[7]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
2 24 154.0 ryan F 41 In [8]: dic1 = {'Name':['Ann','Joe'],
...: 'Sex':['M','F'],
...: 'Age':[27,33],
...: 'Height':[168,177.2],
...: 'Weight':[51,65]} In [9]: student1 = pd.DataFrame(dic1) In [10]: Student = pd.concat([student,student1]) #插入行
In [11]: Student
Out[11]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
2 24 154.0 ryan F 41
0 27 168.0 Ann M 51
1 33 177.2 Joe F 65 In [14]: pd.DataFrame(Student,columns = ['Age','Height','Name','Sex','Weight','Score']) #新增列
Out[14]:
Age Height Name Sex Weight Score
0 27 165.7 LiuShunxiang M 61 NaN
1 23 167.2 Zhangshan F 63 NaN
2 24 154.0 ryan F 41 NaN
0 27 168.0 Ann M 51 NaN
1 33 177.2 Joe F 65 NaN In [16]: Student.ix[Student['Name']=='ryan','Height'] = 160 #修改某个数据
In [17]: Student
Out[17]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
2 24 160.0 ryan F 41
0 27 168.0 Ann M 51
1 33 177.2 Joe F 65 In [18]: Student[Student['Height']>160] #删选
Out[18]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
0 27 168.0 Ann M 51
1 33 177.2 Joe F 65 In [21]: Student.drop(['Weight'],axis = 1).head() #删除列
Out[21]:
Age Height Name Sex
0 27 165.7 LiuShunxiang M
1 23 167.2 Zhangshan F
2 24 160.0 ryan F
0 27 168.0 Ann M
1 33 177.2 Joe F In [22]: Student.drop([1,2]) #删除行索引为1和2的行
Out[22]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
0 27 168.0 Ann M 51 In [24]: Student.drop(['Age'],axis = 1) #删除列索引为Age的列
Out[24]:
Height Name Sex Weight
0 165.7 LiuShunxiang M 61
1 167.2 Zhangshan F 63
2 154.0 ryan F 41
0 168.0 Ann M 51
1 177.2 Joe F 65 In [26]: Student.groupby('Sex').agg([np.mean,np.median]) #等价于SELECT…FROM…GROUP BY…功能
Out[26]:
Age Height Weight
mean median mean median mean median
Sex
F 26.666667 24 168.133333 167.20 56.333333 63
M 27.000000 27 166.850000 166.85 56.000000 56 In [27]: series = pd.Series(np.random.randint(1,20,5)) #排序
In [28]: series
Out[28]:
0 9
1 17
2 17
3 13
4 15
dtype: int32 In [29]: series.order() #默认升序
C:/Anaconda2/Scripts/ipython-script.py:1: FutureWarning: order is deprecated, use sort_values(...)
if __name__ == '__main__':
Out[29]:
0 9
3 13
4 15
1 17
2 17
dtype: int32 In [30]: series.order(ascending = False) #降序
C:/Anaconda2/Scripts/ipython-script.py:1: FutureWarning: order is deprecated, use sort_values(...)
if __name__ == '__main__':
Out[30]:
2 17
1 17
4 15
3 13
0 9
dtype: int32 In [31]: Student.sort_values(by = ['Height']) #按值排序
Out[31]:
Age Height Name Sex Weight
2 24 160.0 ryan F 41
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
0 27 168.0 Ann M 51
1 33 177.2 Joe F 65 In [32]: dict2 = {'Name':['ryan','LiuShunxiang','Zhangshan','Ann','Joe'],
...: 'Score':['','','','','']} In [33]: Score = pd.DataFrame(dict2)
In [34]: Score
Out[34]:
Name Score
0 ryan 89
1 LiuShunxiang 90
2 Zhangshan 78
3 Ann 60
4 Joe 53 In [35]: stu_score = pd.merge(Student,Score,on = 'Name') #表连接
In [36]: stu_score
Out[36]:
Age Height Name Sex Weight Score
0 27 165.7 LiuShunxiang M 61 90
1 23 167.2 Zhangshan F 63 78
2 24 160.0 ryan F 41 89
3 27 168.0 Ann M 51 60
4 33 177.2 Joe F 65 53
注:student1以dic形式转DataFrame对象和直接新建DataFrame对象,连接结果不同
In [71]:student1 = DataFrame({'name';['Ann','Joe'],'Sex':['M','F'],'Age':[27,33],'Height':[168,177.2],'Weight':[51,65
...: ]})
In [72]: student
Out[72]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
2 24 154.0 ryan F 41 In [73]: student1
Out[73]:
Age Height Sex Weight name
0 27 168.0 M 51 Ann
1 33 177.2 F 65 Joe In [74]: Student = pd.concat([student,student1])
In [75]: Student
Out[75]:
Age Height Name Sex Weight name
0 27 165.7 LiuShunxiang M 61 NaN
1 23 167.2 Zhangshan F 63 NaN
2 24 154.0 ryan F 41 NaN
0 27 168.0 NaN M 51 Ann
1 33 177.2 NaN F 65 Joe
延伸表连接,merge函数参数说明如下:
参数 | 说明 |
left | 参与合并的左侧DataFrame |
right | 参与合并的右侧DataFrame |
how | "inner"、"outer"、"left"、"right"其中之一,默认为inner |
on | 用于连接的列名 |
left_on | 左侧DataFrame中用作连接键的列 |
right_on | 右侧DataFrame中用作连接键的列 |
left_index | 将左侧DataFrame中的行索引作为连接的键 |
right_index | 将右侧DataFrame中的行索引作为连接的键 |
sort | 根据连接键对合并后的数据进行排序 |
举例如下
In [5]: df1 = DataFrame({'key':['b','b','a','c','a','a','b'],'data1':range(7)})
In [6]: df1
Out[6]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b In [7]: df2 = DataFrame({'key':['a','b','d'],'data2':range(3)})
In [8]: df2
Out[8]:
data2 key
0 0 a
1 1 b
2 2 d In [9]: pd.merge(df1,df2) #默认内链接,合并相同的key即a,b
Out[9]:
data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0 In [10]: df3 = DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1':range(7)})
In [11]: df4 = DataFrame({'rkey':['a','b','d'],'data2':range(3)}) In [12]: df3
Out[12]:
data1 lkey
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b In [13]: df4
Out[13]:
data2 rkey
0 0 a
1 1 b
2 2 d In [14]: print pd.merge(df3,df4,left_on = 'lkey',right_on = 'rkey')
data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a In [15]: print pd.merge(df3,df4,left_on = 'lkey',right_on = 'data2')
Empty DataFrame
Columns: [data1, lkey, data2, rkey]
Index: [] In [16]: print pd.merge(df1,df2,how = 'outer')
data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0 In [17]: df5 = DataFrame({'key':list('bbacab'),'data1':range(6)})
In [18]: df6 = DataFrame({'key':list('ababd'),'data2':range(5)})
In [19]: df5
Out[19]:
data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 b In [20]: df6
Out[20]:
data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 d In [21]: print pd.merge(df5,df6,on = 'key',how = 'left')
data1 key data2
0 0 b 1.0
1 0 b 3.0
2 1 b 1.0
3 1 b 3.0
4 2 a 0.0
5 2 a 2.0
6 3 c NaN
7 4 a 0.0
8 4 a 2.0
9 5 b 1.0
10 5 b 3.0 In [22]: left = DataFrame({'key1':['foo','foo','bar'],'key2':['one','two','one'],'lval':[1,2,3]})
In [23]: right = DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})
In [24]: left
Out[24]:
key1 key2 lval
0 foo one 1
1 foo two 2
2 bar one 3 In [25]: right
Out[25]:
key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7 In [26]: print pd.merge(left,right,on = ['key1','key2'],how = 'outer')
key1 key2 lval rval
0 foo one 1.0 4.0
1 foo one 1.0 5.0
2 foo two 2.0 NaN
3 bar one 3.0 6.0
4 bar two NaN 7.0 In [27]: print pd.merge(left,right,on = 'key1')
key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7 In [28]: print pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))
key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo two 2 one 4
3 foo two 2 one 5
4 bar one 3 one 6
5 bar one 3 two 7
4.离散化面元划分
In [17]: age = [20,22,25,27,21,23,37,31,61,45,41,32]
In [18]: bins = [18,25,35,60,100] In [19]: cats = pd.cut(age,bins)
In [20]: cats
Out[20]:
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, object): [(18, 25] < (25, 35] < (35, 60] < (60, 100]] In [26]: group_names = ['YoungAdult','Adult','MiddleAged','Senior'] In [27]: pd.cut(age,bins,labels = group_names) #设置面元名称
Out[27]:
[YoungAdult, YoungAdult, YoungAdult, Adult, YoungAdult, ..., Adult, Senior, MiddleAged, MiddleAged, Adult]
Length: 12
Categories (4, object): [YoungAdult < Adult < MiddleAged < Senior] In [28]: data = np.random.randn(10) In [29]: cats = pd.qcut(data,4) #qcut提供根据样本分位数对数据进行面元划分
In [30]: cats
Out[30]:
[(0.268, 0.834], (-0.115, 0.268], (0.268, 0.834], [-1.218, -0.562], (-0.562, -0.115], [-1.218, -0.562], (-0.115, 0.268], [-1.218, -0.562], (0.268, 0.834], (-0.562, -0.115]]
Categories (4, object): [[-1.218, -0.562] < (-0.562, -0.115] < (-0.115, 0.268] < (0.268, 0.834]] In [33]: pd.value_counts(cats)
Out[33]:
(0.268, 0.834] 3
[-1.218, -0.562] 3
(-0.115, 0.268] 2
(-0.562, -0.115] 2
dtype: int64 In [35]: pd.qcut(data,[0.1,0.5,0.9,1.]) #自定义分位数,[0-1]的数值
Out[35]:
[(-0.115, 0.432], (-0.115, 0.432], (0.432, 0.834], NaN, [-0.787, -0.115], [-0.787, -0.115], (-0.115, 0.432], [-0.787, -0.115], (-0.115, 0.432], [-0.787, -0.115]]
Categories (3, object): [[-0.787, -0.115] < (-0.115, 0.432] < (0.432, 0.834]]
5.重命名轴索引
In [36]: data = DataFrame(np.arange(12).reshape(3,4),index = ['Ohio','Colorado','New York'],columns = ['one','two','thr
...: ee','four']) In [37]: data
Out[37]:
one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
New York 8 9 10 11 In [38]: data.index = data.index.map(str.upper)
In [39]: data
Out[39]:
one two three four
OHIO 0 1 2 3
COLORADO 4 5 6 7
NEW YORK 8 9 10 11 In [40]: data.rename(index = str.title,columns=str.upper)
Out[40]:
ONE TWO THREE FOUR
Ohio 0 1 2 3
Colorado 4 5 6 7
New York 8 9 10 11 In [41]: data.rename(index={'OHIO':'INDIANA'},columns={'three':'ryana'}) #对部分轴标签更新
Out[41]:
one two ryana four
INDIANA 0 1 2 3
COLORADO 4 5 6 7
NEW YORK 8 9 10 11
数据转换
1.分组
In [42]: df = DataFrame({'key1':['a','a','b','b','a'],'key2':['one','two','one','two','one'],'data1':np.random.randn(5)
...: ,'data2':np.random.randn(5)}) In [43]: df
Out[43]:
data1 data2 key1 key2
0 0.762448 0.816634 a one
1 1.412613 0.867923 a two
2 0.899297 -1.049657 b one
3 0.912080 0.628012 b two
4 -0.549258 -1.327614 a one In [44]: grouped = df['data1'].groupby(df['key1']) #按key1列分组,计算data1列的平均值
In [45]: grouped
Out[45]: <pandas.core.groupby.SeriesGroupBy object at 0x00000000073C97F0> In [46]: grouped.mean()
Out[46]:
key1
a 0.541935
b 0.905688
Name: data1, dtype: float64 In [48]: df['data1'].groupby([df['key1'],df['key2']]).mean()
Out[48]:
key1 key2
a one 0.106595
two 1.412613
b one 0.899297
two 0.912080
Name: data1, dtype: float64 In [49]: df.groupby('key1').mean() #根据列名分组
Out[49]:
data1 data2
key1
a 0.541935 0.118981
b 0.905688 -0.210822 In [50]: df.groupby(['key1','key2']).mean()
Out[50]:
data1 data2
key1 key2
a one 0.106595 -0.255490
two 1.412613 0.867923
b one 0.899297 -1.049657
two 0.912080 0.628012 In [51]: df.groupby('key1')['data1'].mean() #选取部分列进行聚合
Out[51]:
key1
a 0.541935
b 0.905688
Name: data1, dtype: float64 In [52]: df.groupby(['key1','key2'])['data1'].mean()
Out[52]:
key1 key2
a one 0.106595
two 1.412613
b one 0.899297
two 0.912080
Name: data1, dtype: float64 In [53]: people = DataFrame(np.random.randn(5,5),columns = ['a','b','c','d','e'],index = ['Joe','Steve','Wes','Jim','Tr
...: avis']) In [54]: people
Out[54]:
a b c d e
Joe 0.223628 -0.282831 0.368583 0.246665 -0.815742
Steve 0.662181 0.187961 0.515883 -2.021429 -0.624596
Wes -1.009086 0.450082 -0.819855 -1.626971 0.632064
Jim 1.593881 0.803760 -0.209345 -1.295325 -0.553693
Travis -0.041911 1.115285 -1.648207 0.521751 -0.414183 In [55]: mapping = {'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'}
In [56]: map_series = Series(mapping)
In [57]: map_series
Out[57]:
a red
b red
c blue
d blue
e red
f orange
dtype: object In [58]: people.groupby(map_series,axis = 1).count() #根据series分组
Out[58]:
blue red
Joe 2 3
Steve 2 3
Wes 2 3
Jim 2 3
Travis 2 3 In [59]: by_columns = people.groupby(mapping,axis =1) #根据字典分组
In [60]: by_columns.sum()
Out[60]:
blue red
Joe 0.615248 -0.874945
Steve -1.505546 0.225546
Wes -2.446826 0.073060
Jim -1.504670 1.843948
Travis -1.126456 0.659191 In [61]: people.groupby(len).sum() #根据函数分组
Out[61]:
a b c d e
3 0.808423 0.971012 -0.660617 -2.675632 -0.737371
5 0.662181 0.187961 0.515883 -2.021429 -0.624596
6 -0.041911 1.115285 -1.648207 0.521751 -0.414183 In [63]: columns = pd.MultiIndex.from_arrays([['US','US','US','JP','JP'],[1,3,5,1,3]],names = ['city','tennor'])
In [65]: df1 = DataFrame(np.random.randn(4,5),columns = columns)
In [66]: df1
Out[66]:
city US JP
tennor 1 3 5 1 3
0 1.103548 1.087425 0.717741 -0.354419 1.294512
1 -0.247544 -1.247665 1.340309 1.337957 0.528693
2 2.168903 -0.124958 0.367158 0.478355 -0.828126
3 -0.078540 -3.062132 -2.095675 -0.879590 -0.020314 In [67]: df1.groupby(level = 'city',axis = 1).count() #根据索引级别分组
Out[67]:
city JP US
0 2 3
1 2 3
2 2 3
3 2 3
2.透视表
pandas为我们提供了实现数据透视表功能的函数pivot_table(),该函数参数说明如下:
参数 | 说明 |
data | 需要进行透视的数据 |
value | 指定需要聚合的字段 |
index | 指定值为行索引 |
columns | 指定值为列索引 |
aggfunc | 聚合函数 |
fill_value | 常量替换缺失值,默认不替换 |
margins | 是否合并,默认否 |
dropna | 是否观测缺失值,默认是 |
举例:
In [68]: dic = {'Name':['LiuShunxiang','Zhangshan','ryan'],
...: ...: 'Sex':['M','F','F'],
...: ...: 'Age':[27,23,24],
...: ...: 'Height':[165.7,167.2,154],
...: ...: 'Weight':[61,63,41]}
...:
In [69]: student = pd.DataFrame(dic)
In [70]: student
Out[70]:
Age Height Name Sex Weight
0 27 165.7 LiuShunxiang M 61
1 23 167.2 Zhangshan F 63
2 24 154.0 ryan F 41 In [71]: pd.pivot_table(student,values = ['Height'],columns = ['Sex']) #'Height'作为数值变量,'Sex'作为分组变量
Out[71]:
Sex F M
Height 160.6 165.7 In [72]: pd.pivot_table(student,values = ['Height','Weight'],columns = ['Sex','Age'])
Out[72]:
Sex Age
Height F 23 167.2
24 154.0
M 27 165.7
Weight F 23 63.0
24 41.0
M 27 61.0
dtype: float64 In [73]: pd.pivot_table(student,values = ['Height','Weight'],columns = ['Sex','Age']).unstack()
Out[73]:
Age 23 24 27
Sex
Height F 167.2 154.0 NaN
M NaN NaN 165.7
Weight F 63.0 41.0 NaN
M NaN NaN 61.0 In [74]: pd.pivot_table(student,values = ['Height','Weight'],columns = ['Sex'],aggfunc = [np.mean,np.median,np.std])
Out[74]:
mean median std
Sex F M F M F M
Height 160.6 165.7 160.6 165.7 9.333810 NaN
Weight 52.0 61.0 52.0 61.0 15.556349 NaN
3.数据可视化
plot参数说明
Series.plot()方法 | DataFrame.plot()方法 | ||
参数 | 说明 | 参数 | 说明 |
label | 用于图例的标签 | subplot | 将各个DataFrame对象绘制到各subplot中 |
ax | matplotlib.subplot对象 | sharex | 若subplot = True,则共用同一X轴,包括刻度和界限 |
style | 风格字符串 | sharey | 若subplot = True,则共用同一X轴,包括刻度和界限 |
alpha | 图表填充的不透明度 | figsize | 表示图像大小的元组 |
kind | 可以是'line','bar','barh','kde' | title | 表示图像标题的字符串 |
xtick | 用作X轴刻度的值 | legend | 添加一个subplot图例,默认True |
Ytick | 用作Y轴刻度的值 | sort_columns | 以字母表顺序绘制各列,默认使用当前列顺序 |
Xlim | X轴的界限 | ||
Ylim | Y轴的界限 |
1)线性图
In [76]: s = Series(np.random.randn(10).cumsum(),index = np.arange(0,100,10))
In [77]: s.plot()
In [78]: df = DataFrame(np.random.randn(10,4).cumsum(0),columns = ['A','B','C','D'],index = np.arange(0,100,10))
In [79]: df.plot()
2)柱状图
In [80]:fig,axes = plt.subplots(2,1)
In [81]:data = Series(np.random.rand(16),index=list('abcdefghijklmnop')) In [82]:data.plot(kind = 'bar',ax = axes[0],color = 'k',alpha = 0.7)
In [83]:data.plot(kind = 'barh',ax = axes[1],color = 'k',alpha = 0.7)
In [84]:df = DataFrame(np.random.rand(6,4),index = ['one','two','three','four','five','six'],columns = pd.Index(['A','B','C','D'],name = 'Genus'))
In [85]:df.plot(kind = 'bar')
3)密度图
In [87]:comp1 = np.random.normal(0,1,size = 100)
In [88]:comp2 = np.random.normal(10,2,size = 100) In [89]:values = Series(np.concatenate([comp1,comp2]))
In [90]:values.hist(bins = 50,alpha = 0.3,color = 'r',normed = True)
In [91]:values.plot(kind = 'kde',style = 'k--')
4)散点图
In [7]: import tushare as ts
In [8]: data = ts.get_hist_data('',start='2017-08-15')
In [9]: pieces = data[['close', 'price_change', 'ma20','volume', 'v_ma20', 'turnover']]
In [10]: pd.scatter_matrix(pieces)
5)热力图
In [11]: cov = np.corrcoef(pieces.T)
In [12]: img = plt.matshow(cov,cmap=plt.cm.summer)
In [13]: plt.colorbar(img, ticks=[-1,0,1])
pandas深入理解的更多相关文章
- python pandas 基础理解
其实每一篇博客我都要用很多琐碎的时间片段来学完写完,每次一点点,用到了就学一点,学一点就记录一点,要用上好几天甚至一两个礼拜才感觉某一小类的知识结构学的差不多了. Pandas 是基于 NumPy 的 ...
- Pandas系列教程——写在前面
之前搜pandas资料,发现互联网上并没有成体系的pandas教程,于是乎突然有个爱迪页儿,打算自己把官网的文档加上自己用pandas的理解,写成一个系列的教程, 巩固自己,方便他人 接下来就干这件事 ...
- 利用Python进行数据分析-Pandas(第四部分-数据清洗和准备)
在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载.清理.转换以及重塑上.这些工作会占到分析时间的80%或更多.有时,存储在文件和数据库中的数据的格式不适合某个特定的任务.研究者都选择使用编 ...
- 利用Python进行数据分析 第7章 数据清洗和准备(1)
学习时间:2019/10/25 周五晚上22点半开始. 学习目标:Page188-Page217,共30页,目标6天学完,每天5页,预期1029学完. 实际反馈:集中学习1.5小时,学习6页:集中学习 ...
- 数据转换--替换值(replace函数)
替换值 replace函数 data=Series([1,-999,2,-999,-1000,3]) data Out[34]: 0 1 1 -999 2 2 3 -999 4 -1000 5 3 d ...
- 深入理解pandas读取excel,txt,csv文件等命令
pandas读取文件官方提供的文档 在使用pandas读取文件之前,必备的内容,必然属于官方文档,官方文档查阅地址 http://pandas.pydata.org/pandas-docs/versi ...
- 1.理解Numpy、pandas
之前一直做得只是采集数据,而没有再做后期对数据的处理分析工作,自己也是有意愿去往这些方向学习的,最近就在慢慢的接触. 首先简单理解一下numpy和pandas:一.NumPy:1.NumPy是高性能计 ...
- pandas 的axis参数的理解
# pandas的axis参数怎样理解? # axis=0 或者 "index": # 如果是单行操作,就指的是某一行 # 如果是聚合操作,指的是跨行cross rows # ax ...
- 深入理解和运用Pandas的GroupBy机制——理解篇
GroupBy是Pandas提供的强大的数据聚合处理机制,可以对大量级的多维数据进行透视,同时GroupBy还提供强大的apply函数,使得在多维数据中应用复杂函数得到复杂结果成为可能(这也是个人认为 ...
随机推荐
- hdoj--1151--Air Raid(最大独立集)
Air Raid Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- angular2 使用swiper
欢迎加入前端交流群交流知识&&获取视频资料:749539640 第一步: npm install swiper --save 第二步:下载swiper ts支持(http://micr ...
- Java数组和内存控制
1.数组初始化 1.1 Java数组是静态的 Java语言是典型的静态语言,因此Java的数组是静态的,即当数组被初始化之后,该数组的长度是不可变的.Java程序中的数组必须经初始化才可使用.所谓初始 ...
- getElementById和querySelector区别
1.常见的获取元素的方法有3种,分别是通过元素ID document.getElementById('idName');.通过标签名字document.getElementsByTagName(tag ...
- Eigen3
Eigen用源码的方式提供给用户使用,在使用时只需要包含Eigen的头文件即可进行使用. Eigen: C++开源矩阵计算工具——Eigen的简单用法 http://blog.csdn.net/aug ...
- Mysql数据类型(一)
介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的宽度,但宽度是可选的 详细参考链接:http://www.runoob.com/mysql/mysql-data- ...
- 使用新的CSS类型对象模型
el.attributeStyleMap.set('padding', CSS.px(42)); const padding = el.attributeStyleMap.get('padding') ...
- 获取URL路径参数getUrlParams
function getUrlParams(){ var reg = new RegExp("(^|&)" + name + "=([^&]*)(& ...
- Android 从imageview中获得bitmap的方法
第一种: 使用setDrawingCacheEnabled()和getDrawingCache()这两种方法,第一个是为了设置是否开启缓存,第二个就可以直接获得imageview中的缓存,一般来说需要 ...
- Android入门知识
1.Android开发环境 Android常用的开发环境包括两个:Eclipse + ADT 和Android Studio,Android Studio作为google官方推出的开发环境自然有得天独 ...