https://zybuluo.com/ysner/note/1141136

题面

求一颗大小为\(n\)的树取联通块的所有方案中,第\(k\)个数之和。

  • \(n\leq1,667,k\leq n\)

解析

这题可以当作暴力踩标算的范本题目。。。(其实是因为高级算法嵌套起来有时不如暴力快)

但这个暴力我是想不到的。。。

我们可以单独讨论每个点对答案的贡献,并把大于该点权值的点权值设为\(1\),其它设为\(0\)。接下来,我们就可以用\(O(nk^2\))的树形DP暴搞了。

但是,复杂度\(O(n^2k^2)\)会鬼啊。

于是换一种思路,枚举一颗树的根(讨论这个点对答案的贡献),统计儿子点在联通块中的结果,并强制取根到儿子点的路径。我们设\(dp[u][i]\)表示点\(u\)为联通块中第\(i\)个点的方案数,就可以转移了。

然而复杂度\(O(n^2k)\)???

但是我们只用枚举整颗树值排名\(\leq k\)的数作为根的情况,复杂度可以降为\(O((n-k)nk)\)。

这还跑过了。。。

Update:强制认为只能转移到 点权值大 或者 点权值相等且点编号大的点,否则会记重。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=s;i>=b;i--)
using namespace std;
const int N=2100,mod=64123;
struct Edge{int to,next;}e[N<<1];
int d[N],h[N],dp[N][N],ans,cnt,n,k,w,root,tot;
il void add(re int u,re int v){e[++cnt]=(Edge){v,h[u]};h[u]=cnt;}
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void dfs(re int u,re int fa)
{
if((d[root]<d[u])||((d[u]==d[root])&&u<root))
fp(i,1,k-1) (dp[u][i+1]+=dp[fa][i])%=mod;
else fp(i,1,k) (dp[u][i]+=dp[fa][i])%=mod;
for(re int i=h[u];i+1;i=e[i].next)
{
re int v=e[i].to;
if(v==fa) continue;
dfs(v,u);
}
fp(i,1,k) (dp[fa][i]+=dp[u][i])%=mod;
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();k=gi();w=gi();
fp(i,1,n) d[i]=gi();
fp(i,1,n-1)
{
re int u=gi(),v=gi();add(u,v);add(v,u);
}
fp(i,1,n)
{
root=i;tot=0;
fp(j,1,n) if((d[j]>d[i])||(d[i]==d[j]&&i>j)) ++tot;
if(tot<k-1) continue;
memset(dp,0,sizeof(dp));
dp[i][1]=1;
for(re int j=h[i];j+1;j=e[j].next)
{
re int v=e[j].to;
dfs(v,i);
}
(ans+=(1ll*dp[i][k]*d[i])%mod)%=mod;
}
printf("%d\n",ans);
return 0;
}

LuoguP4365 [九省联考2018]秘密袭击的更多相关文章

  1. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  2. 【BZOJ5250】[九省联考2018]秘密袭击(动态规划)

    [BZOJ5250][九省联考2018]秘密袭击(动态规划) 题面 BZOJ 洛谷 给定一棵树,求其所有联通块的权值第\(k\)大的和. 题解 整个\(O(nk(n-k))\)的暴力剪剪枝就给过了.. ...

  3. [BZOJ5250][九省联考2018]秘密袭击(DP)

    5250: [2018多省省队联测]秘密袭击 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3  Solved: 0[Submit][Status][D ...

  4. P4365 [九省联考2018]秘密袭击coat

    $ \color{#0066ff}{ 题目描述 }$ Access Globe 最近正在玩一款战略游戏.在游戏中,他操控的角色是一名C 国士 兵.他的任务就是服从指挥官的指令参加战斗,并在战斗中取胜. ...

  5. 解题:九省联考2018 秘密袭击CoaT

    题面 按照*Miracle*的话来说,网上又多了一篇n^3暴力的题解 可能是因为很多猫题虽然很好,但是写正解性价比比较低? 直接做不可做,转化为统计贡献:$O(n)$枚举每个权值,直接统计第k大大于等 ...

  6. [九省联考 2018]秘密袭击coat

    Description 题库链接 给出一棵 \(n\) 个点的树,每个点有点权.求所有联通块的权值 \(k\) 大和,对 \(64123\) 取模. \(1\leq n,k\leq 1666\) So ...

  7. [LOJ #2473] [九省联考2018] 秘密袭击coat

    题目链接 洛谷. LOJ,LOJ机子是真的快 Solution 我直接上暴力了...\(O(n^2k)\)洛谷要\(O2\)才能过...loj平均单点一秒... 直接枚举每个点为第\(k\)大的点,然 ...

  8. 并不对劲的复健训练-bzoj5250:loj2473:p4365:[九省联考2018]秘密袭击

    题目大意 有一棵\(n\)(\(n\leq 1666\))个点的树,有点权\(d_i\),点权最大值为\(w\)(\(w\leq 1666\)).给出\(k\)(\(k\leq n\)),定义一个选择 ...

  9. luogu P4365 [九省联考2018]秘密袭击coat

    luogu 这里不妨考虑每个点的贡献,即求出每个点在多少个联通块中为第\(k\)大的(这里权值相同的可以按任意顺序排大小),然后答案为所有点权值\(*\)上面求的东西之和 把比这个点大的点看成\(1\ ...

随机推荐

  1. JS高级——沙箱

    基本概念 1.沙箱:与外界隔绝的一个环境,外界无法修改该环境内任何信息,沙箱内的东西单独属于一个世界 2.苹果手的app使用的就是沙箱模式去运行,隔离app的空间,每个app独立运行 js沙箱基本模式 ...

  2. gtest ASSERT_TRUE和EXPECT_TRUE

    调用ASSERT_TRUE的函数,返回值类型定义必须是void,如果想返回别的类型,就用EXPECT_TRUE: void abc::fun() { ASSERT_TRUE(fun1()); } bo ...

  3. rxswift-self.usernameTF.rx.text.orEmpty.map

    self.usernameTF.rx.text.orEmpty.map 一堆类型转化+数据处理的操作 self.usernameTF.rx:将textfiled用Reactive封装: .text:监 ...

  4. iOS crash log 解析 symbol address = stack address - slide 运行时获取slide的api 利用dwarfdump从dsym文件中得到symbol

    概述: 为什么 crash log 内 Exception Backtrace 部分的地址(stack address)不能从 dsym 文件中查出对应的代码? 因为 ASLR(Address spa ...

  5. C# 把时间 月 //把第一个0替换为空

    string str = "2019-01"; //name: "2019-01月" str = str.Substring(str.Length - , ); ...

  6. PHP 之ip查询接口

    /** * @param $ip 待查询的ip * @return mixed */ function getIpAddressInfo($ip) { $ipurl = 'http://api.ip1 ...

  7. servlet之@PostConstruct,@PreDestroy

    1.@PostConstruct说明 被@PostConstruct修饰的方法会在服务器加载Servlet的时候运行,并且只会被服务器调用一次,类似于Serclet的inti()方法.被@PostCo ...

  8. js的StringBuffer类

    function StringBuffer(str){ var arr = []; str = str || ""; arr.push(str); this.append = fu ...

  9. js 输入框只能输入 1-7 的数字

    $jq(function () { $jq("#XSCM_WORKDAY").keyup(function () { //如果输入非数字,则替换为'',如果输入数字,则在每4位之后 ...

  10. cmake编译安装mysql

    运维开发技术交流群欢迎大家加入一起学习(QQ:722381733) 前言:这里我使用的安装方式是(cmake编译),我选择的版本是:cmake-2.8.8.tar.gz.mysql-5.5.32.ta ...