感觉数位DP有点弱,强化一下。。。


这道题是一道比较裸的数位DP。

我们用\(dp[i][j]\)表示长度为\(i\)最高位为\(j\)的windy数有多少个,状态转移方程为\(dp[i][j]=\sum_{abs(j-k)>=2}{dp[i-1][k]}\)。

然后有一个小优化(其实不能算优化吧),就是算一下输入两个数的长度,然后取长度最大值作为第一维的极限,这样就稍微比直接算到\(i=11\)要优一点了。


AC代码如下:

28ms 788kb

// By Ilverene

#include<bits/stdc++.h>

using namespace std;

namespace StandardIO{

	template<typename T>inline void read(T &x){
x=0;T f=1;char c=getchar();
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';
x*=f;
} template<typename T>inline void write(T x){
if(x<0)putchar('-'),x*=-1;
if(x>=10)write(x/10);
putchar(x%10+'0');
} } using namespace StandardIO; namespace Solve{ // Define your global variables here.
int a,b;
int dp[11][11]; // Define your main functions here.
template<typename T>inline T length(T num){
T ans=0;
for(;num;++ans,num/=10);
return ans;
} template<typename T>inline T calc(T limit){
memset(dp,0,sizeof(dp));
for(register int i=0;i<=9;++i){
dp[1][i]=1;
}
for(register int i=2;i<=limit;++i){
for(register int j=0;j<=9;++j){
for(register int k=0;k<=j-2;++k){
dp[i][j]+=dp[i-1][k];
}
for(register int k=j+2;k<=9;++k){
dp[i][j]+=dp[i-1][k];
}
}
}
} template<typename T>inline T calcAll(T n){
T len=0;
T num[11];
for(;n;num[++len]=n%10,n/=10);
T ans=0;
for(register int i=1;i<=len-1;++i){
for(register int j=1;j<=9;++j){
ans+=dp[i][j];
}
}
for(register int i=1;i<num[len];++i){
ans+=dp[len][i];
}
for(register int i=len-1;i>=1;--i){
for(register int j=0;j<=num[i]-1;++j){
if(abs(j-num[i+1])>=2)ans+=dp[i][j];
}
if(abs(num[i+1]-num[i])<2)break;
}
return ans;
} inline void solve(){
// Write your main logic here.
read(a),read(b);
calc(max(length(a),length(b)));
write(calcAll(b+1)-calcAll(a));
}
} using namespace Solve; int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
solve();
}

题解 P2657 【[SCOI2009]windy数】的更多相关文章

  1. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  2. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  3. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  4. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  5. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  6. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  7. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

  8. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  9. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  10. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

随机推荐

  1. luogu 自适应Simpson2

    自适应simpson2 题意 求一个不定积分 解法 画出函数的图像,可以知道其在0处函数值趋近于 $ + \infty $,在10处趋近于0,所以我们从0积分到10就可以了(保险起见,积到15) 代码 ...

  2. 开发微信小程序必须要知道的事

    为什么是小程序? 为什么我们会开发小程序呢?或许是因为工作需要,或许是源于自己的追求(来自名利的欲望),但我要说--这是一种缘分,很美好的缘分,很多年后还值得庆幸的缘分 小程序目前可以分为三个阶段 一 ...

  3. Unity 常用常找的东西存放

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/50483316 作者:car ...

  4. java开发必背API

    1.java.io.file类,File用于管理文件或目录: 所属套件:java.io File file = new File(fileStringPath); 1)file.mk(),真的会创建一 ...

  5. HDU 4332 Contest 4

    顶好的一道题.其实,是POJ 2411的升级版.但POJ 2411我用的插头DP来做,一时没想到那道题怎么用状态DP,于是回头看POJ 2411那一道的状态DP,其实也很简单,就是每一行都设一个状态, ...

  6. linux /proc/cpuinfo 文件描写叙述

    processor :系统中逻辑处理核的编号.对于单核处理器.则课觉得是其CPU编号,对于多核处理器则能够是物理核.或者使用超线程技术虚拟的逻辑核 vendor_id :CPU制造商 cpu fami ...

  7. emitter 增强 多条件触发

    ;(function(global ,undefined){ var evts = {} ,onceTag = '__event_once' function emit(event ){ ) if ( ...

  8. node-webkit 主页面和 iframe 页通讯

    <html lang="en-US"> <head> <title>Hello World!</title> <style&g ...

  9. jmeter脚本编写之五类常见请求编写

    1.普通post请求 2.普通json请求 3.带query參数的json请求 4.xml请求 5.上传请求 starting (Windows系统 点击 F12 调出开发人员工具,选择Network ...

  10. C/S和B/S交互

    近期一直在做C/S的项目,每天都超忙,抽个时间写篇博客,之前一直做C/S项目就是各种窗口.各种控件,拖来拖去,然后点进去写方法,做BS的时候呢,由于一直使用的是mvc,所以就是常常手写代码.或者拖引用 ...