感觉数位DP有点弱,强化一下。。。


这道题是一道比较裸的数位DP。

我们用\(dp[i][j]\)表示长度为\(i\)最高位为\(j\)的windy数有多少个,状态转移方程为\(dp[i][j]=\sum_{abs(j-k)>=2}{dp[i-1][k]}\)。

然后有一个小优化(其实不能算优化吧),就是算一下输入两个数的长度,然后取长度最大值作为第一维的极限,这样就稍微比直接算到\(i=11\)要优一点了。


AC代码如下:

28ms 788kb

// By Ilverene

#include<bits/stdc++.h>

using namespace std;

namespace StandardIO{

	template<typename T>inline void read(T &x){
x=0;T f=1;char c=getchar();
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';
x*=f;
} template<typename T>inline void write(T x){
if(x<0)putchar('-'),x*=-1;
if(x>=10)write(x/10);
putchar(x%10+'0');
} } using namespace StandardIO; namespace Solve{ // Define your global variables here.
int a,b;
int dp[11][11]; // Define your main functions here.
template<typename T>inline T length(T num){
T ans=0;
for(;num;++ans,num/=10);
return ans;
} template<typename T>inline T calc(T limit){
memset(dp,0,sizeof(dp));
for(register int i=0;i<=9;++i){
dp[1][i]=1;
}
for(register int i=2;i<=limit;++i){
for(register int j=0;j<=9;++j){
for(register int k=0;k<=j-2;++k){
dp[i][j]+=dp[i-1][k];
}
for(register int k=j+2;k<=9;++k){
dp[i][j]+=dp[i-1][k];
}
}
}
} template<typename T>inline T calcAll(T n){
T len=0;
T num[11];
for(;n;num[++len]=n%10,n/=10);
T ans=0;
for(register int i=1;i<=len-1;++i){
for(register int j=1;j<=9;++j){
ans+=dp[i][j];
}
}
for(register int i=1;i<num[len];++i){
ans+=dp[len][i];
}
for(register int i=len-1;i>=1;--i){
for(register int j=0;j<=num[i]-1;++j){
if(abs(j-num[i+1])>=2)ans+=dp[i][j];
}
if(abs(num[i+1]-num[i])<2)break;
}
return ans;
} inline void solve(){
// Write your main logic here.
read(a),read(b);
calc(max(length(a),length(b)));
write(calcAll(b+1)-calcAll(a));
}
} using namespace Solve; int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
solve();
}

题解 P2657 【[SCOI2009]windy数】的更多相关文章

  1. C++ 洛谷 P2657 [SCOI2009]windy数 题解

    P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算 ...

  2. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  3. P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B ...

  4. 洛谷 P2657 [SCOI2009]windy数 解题报告

    P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{wi ...

  5. 洛谷——P2657 [SCOI2009]windy数

    P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和 ...

  6. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  7. [洛谷P2657][SCOI2009]windy数

    题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0 ...

  8. Luogu P2657 [SCOI2009]windy数

    一道比较基础的数位DP,还是挺套路的. 首先看题,发现这个性质和数的大小无关,因此我们可以直接数位DP,经典起手式: \(f[a,b]=f(b)-f(a-1)\) 然后考虑如何求解\(f(x)\).我 ...

  9. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

  10. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

随机推荐

  1. 嵌入式平台选择:树莓派 or BeagleBone Black(BBB)

    原文链接: Michael Leonard 翻译: 极客范- 小道空空 译文链接: http://www.geekfan.net/5246/ 嵌入式平台选择:树莓派 or BeagleBone Bla ...

  2. 转载一遍比较好的,django2.1搭建博客教程

    非常感谢这位博主,找了几个星期终于找到了 https://www.dusaiphoto.com/article/article-detail/4/

  3. AT1145 ホリドッグ

    洛谷的题解区里竟然没有O(1)做法详解-- 题面就是要判断\(1+2+\dots+n\)是不是素数 很容易让人想到上面的式子事实上等于\(n(n+1)/2\) 根据质数的定义,质数只能被1和自身整除 ...

  4. 创业笔记-Node.js入门之阻塞与非阻塞

    阻塞与非阻塞 正如此前所提到的,当在请求处理程序中包括非阻塞操作时就会出问题.但是,在说这之前,我们先来看看什么是阻塞操作. 我不想去解释“阻塞”和“非阻塞”的具体含义,我们直接来看,当在请求处理程序 ...

  5. codevs——T2488 绿豆蛙的归宿

    http://codevs.cn/problem/2488/  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Descri ...

  6. HDU 4308 Contest 1

    纯BFS+优先队列扩展. #include <iostream> #include <cstdio> #include <cstring> #include < ...

  7. poj 3311 Hie with the Pie (TSP问题)

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4491   Accepted: 2376 ...

  8. Android sdCard路径问题

    一,获取Android设备的全部存储设备,这里边肯定有一个能用的 StorageManager sm = (StorageManager) context.getSystemService(Conte ...

  9. bzoj1103: [POI2007]大都市meg(树链剖分)

    1103: [POI2007]大都市meg 题目:传送门 简要题意: 给你一棵树,给出每条边的权值,两个操作:1.询问根到编号x的最短路径的权值和  2.修改一条边的边权 题解: 很明显啊,看懂了题基 ...

  10. webpack的像素转vw loader插件

    这是一款针对webpack的像素转vw单位的loader插件. 笔者公司中,h5 rem的开发方案目前已经渐渐开始转向vw方案,因此本工具应运而生. 目前所制作的h5,大部分设计稿分辨率都是750的宽 ...