Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)
题目链接:
https://projecteuler.net/problem=435
题意:
The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined recursively as \(f_n = f_{n-1} + f_{n-2}\) with base cases \(f_0 = 0\) and \(f_1 = 1\).
Define the polynomials $ {F_n, n ≥ 0} $ as $F_n(x) =\sum_{i=0}^{n} f_i x^i $.
For example, \(F_{7}(x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7\), and$ F_7(11) = 268357683$.
Let \(n = 10^{15}\). Find [$\sum_{x=0}^{100} F_{n}(x)] $ mod \(1307674368000 (= 15!)\).
题解:
f_{n}x^{n} & f_{n+1}x^{n+1} & F_{n}(x)
\end{pmatrix}
\]
\begin{pmatrix}
f_{n-1}x^{n-1} & f_{n}x^{n} & F_{n-1}(x)
\end{pmatrix}
\begin{pmatrix}
0 & 0 & x^{2} \\
0 & 1 & 1 \\
1 & 0 & i
\end{pmatrix}
\]
\begin{pmatrix}
f_{0}x^{0} & f_{1}x^{1} & F_{1}(x)
\end{pmatrix}
\begin{pmatrix}
0 & 0 & x^{2} \\
0 & 1 & 1 \\
1 & 0 & i
\end{pmatrix}^{n-1}
\]
\begin{pmatrix}
0 & x & x
\end{pmatrix}
\begin{pmatrix}
0 & 0 & x^{2} \\
0 & 1 & 1 \\
1 & 0 & i
\end{pmatrix}^{n-1}
\]
然后跑矩阵快速幂就可以得到 \(F_{n}(x)\)了。\(C\)++ 会爆 \(long long\)... 用 \(Python\)吧...
其实用 \(C\)++也行,就是将模数分解再用 \(crt\) 合并。
代码:
#coding: utf-8
from math import sqrt
mod = 1307674368000
def matrix_mult(a, b) :
n = len(a); m = len(b); h = len(b[0])
ans = [[0, 0, 0],[0, 0, 0],[0, 0, 0]]
for i in range(n) :
for j in range(m) :
for k in range(h) :
ans[i][k] += a[i][j] * b[j][k]
if ans[i][k] >= mod :
ans[i][k] %= mod
ans[i][k] %= mod
ans[i][j] %= mod
return ans
def qpower(a, n, i) :
ans = [[0, i, i],[0, 0, 0],[0, 0, 0]]
while n > 0 :
if n & 1 : ans = matrix_mult(ans, a)
n >>= 1
a = matrix_mult(a, a)
return ans[0][2]
if __name__ =="__main__":
ans = 0
for i in range(101):
a = [[0, 0, i ** 2],
[0, 1, 1],
[1, 0, i]]
ans += qpower(a, 10 ** 15 - 1, i)
print( ans % mod )
Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)的更多相关文章
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- hdu3306 Another kind of Fibonacci【矩阵快速幂】
转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...
- POJ 3070 Fibonacci 【矩阵快速幂】
<题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...
- Count Numbers(矩阵快速幂)
Count Numbers 时间限制: 8 Sec 内存限制: 128 MB提交: 43 解决: 19[提交] [状态] [讨论版] [命题人:admin] 题目描述 Now Alice want ...
- poj 3070 Fibonacci(矩阵快速幂,简单)
题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...
- POJ 3070 Fibonacci(矩阵快速幂)
题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...
- 2018.09.25 poj3070 Fibonacci(矩阵快速幂)
传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...
- poj3070 Fibonacci(矩阵快速幂)
矩阵快速幂基本应用. 对于矩阵乘法与递推式之间的关系: 如:在斐波那契数列之中 f[i] = 1*f[i-1]+1*f[i-2] f[i-1] = 1*f[i-1] + 0*f[i-2].即 所以, ...
- HDU:Gauss Fibonacci(矩阵快速幂+二分)
http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied ...
随机推荐
- Codeforces Round#320 Div2 解题报告
Codeforces Round#320 Div2 先做个标题党,骗骗访问量,结束后再来写咯. codeforces 579A Raising Bacteria codeforces 579B Fin ...
- excel导入数据的
.aspx 文件 <form id="form1" runat="server"> <div> <asp:FileUpload I ...
- UESTC 360 Another LCIS
Another LCIS Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on UESTC. Original ...
- Linux下安装Go环境
登录Linux Mac或Linux的用户可以用命令ssh root@xxx.xxx.xxx.xxx登录主机Window的用户可以使用SecureCRT登录主机虚拟机用户直接打开你的虚拟机 安装Go环境 ...
- tsp问题——遗传算法解决
TSP问题最简单的求解方法是枚举法. 它的解是多维的.多局部极值的.趋于无穷大的复杂解的空间.搜索空间是n个点的全部排列的集合.大小为(n-1)! .能够形象地把解空间看成是一个无穷大的丘陵地带,各山 ...
- ListView-添加head跟foot item 问题
今天在使用ListView 的 addFooterView 的方法时候,遇到了一个问题.当我代码中执行了如下的操作 ListView listView = new ListView(this); li ...
- .Net数据操作案例
Interface using System.Collections.Generic; using Ddd.Core.Domain.Customers; namespace Ddd.Services. ...
- tomcat+nginx+redis实现均衡负载以及session共享
1.redis简介及下载安装 作为这次的主角,相信大家对redis应该都一定印象,redis是一款开源的高性能key-value数据库,拥有丰富的键值储存类型,并提供多种语言的API. 与一般数据库不 ...
- ElasticSearch 应用场景
主要分为如下几点: 1.站内搜索:主要和 Solr 竞争,属于后起之秀. 2.NoSQL Json文档数据库:主要抢占 Mongo 的市场,它在读写性能上优于 Mongo ,同时也支持地理位置查询,还 ...
- DbSet<>.Find()
第一篇为大家带来新的API,DbSet<>.Find(). 过去我们常常用Where或First(FirstOrDefault)方法来查找对应的实体,比如: var people = fr ...