一、创建用户

# useradd spark

# passwd spark

二、下载软件

JDK,Scala,SBT,Maven

版本信息如下:

JDK jdk-7u79-linux-x64.gz

Scala scala-2.10.5.tgz

SBT sbt-0.13.7.zip

Maven apache-maven-3.2.5-bin.tar.gz

注意:如果只是安装Spark环境,则只需JDK和Scala即可,SBT和Maven是为了后续的源码编译。

三、解压上述文件并进行环境变量配置

# cd /usr/local/

# tar xvf /root/jdk-7u79-linux-x64.gz

# tar xvf /root/scala-2.10.5.tgz

# tar xvf /root/apache-maven-3.2.5-bin.tar.gz

# unzip /root/sbt-0.13.7.zip

修改环境变量的配置文件

# vim /etc/profile

export JAVA_HOME=/usr/local/jdk1..0_79
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export SCALA_HOME=/usr/local/scala-2.10.
export MAVEN_HOME=/usr/local/apache-maven-3.2.
export SBT_HOME=/usr/local/sbt
export PATH=$PATH:$JAVA_HOME/bin:$SCALA_HOME/bin:$MAVEN_HOME/bin:$SBT_HOME/bin

使配置文件生效

# source /etc/profile

测试环境变量是否生效

# java –version

java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) -Bit Server VM (build 24.79-b02, mixed mode)

# scala –version

Scala code runner version 2.10. -- Copyright -, LAMP/EPFL

# mvn –version

Apache Maven 3.2. (12a6b3acb947671f09b81f49094c53f426d8cea1; --15T01::+:)
Maven home: /usr/local/apache-maven-3.2.
Java version: 1.7.0_79, vendor: Oracle Corporation
Java home: /usr/local/jdk1..0_79/jre
Default locale: en_US, platform encoding: UTF-
OS name: "linux", version: "3.10.0-229.el7.x86_64", arch: "amd64", family: "unix"

# sbt --version

sbt launcher version 0.13.

四、主机名绑定

[root@spark01 ~]# vim /etc/hosts

192.168.244.147 spark01

五、配置spark

切换到spark用户下

下载hadoop和spark,可使用wget命令下载

spark-1.4.0 http://d3kbcqa49mib13.cloudfront.net/spark-1.4.0-bin-hadoop2.6.tgz

Hadoop http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

解压上述文件并进行环境变量配置

修改spark用户环境变量的配置文件

[spark@spark01 ~]$ vim .bash_profile

export SPARK_HOME=$HOME/spark-1.4.-bin-hadoop2.
export HADOOP_HOME=$HOME/hadoop-2.6.
export HADOOP_CONF_DIR=$HOME/hadoop-2.6./etc/hadoop
export PATH=$PATH:$SPARK_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

使配置文件生效

[spark@spark01 ~]$ source .bash_profile

修改spark配置文件

[spark@spark01 ~]$ cd spark-1.4.0-bin-hadoop2.6/conf/

[spark@spark01 conf]$ cp spark-env.sh.template spark-env.sh

[spark@spark01 conf]$ vim spark-env.sh

在后面添加如下内容:

export SCALA_HOME=/usr/local/scala-2.10.
export SPARK_MASTER_IP=spark01
export SPARK_WORKER_MEMORY=1500m
export JAVA_HOME=/usr/local/jdk1..0_79

有条件的童鞋可将SPARK_WORKER_MEMORY适当设大一点,因为我虚拟机内存是2G,所以只给了1500m。

配置slaves

[spark@spark01 conf]$ cp slaves slaves.template

[spark@spark01 conf]$ vim slaves

将localhost修改为spark01

启动master

[spark@spark01 spark-1.4.0-bin-hadoop2.6]$ sbin/start-master.sh

starting org.apache.spark.deploy.master.Master, logging to /home/spark/spark-1.4.-bin-hadoop2./sbin/../logs/spark-spark-org.apache.spark.deploy.master.Master--spark01.out

查看上述日志的输出内容

[spark@spark01 spark-1.4.0-bin-hadoop2.6]$ cd logs/

[spark@spark01 logs]$ cat spark-spark-org.apache.spark.deploy.master.Master-1-spark01.out

Spark Command: /usr/local/jdk1..0_79/bin/java -cp /home/spark/spark-1.4.-bin-hadoop2./sbin/../conf/:/home/spark/spark-1.4.-bin-hadoop2./lib/spark-assembly-1.4.-hadoop2.6.0.jar:/home/spark/spark-1.4.-bin-hadoop2./lib/datanucleus-core-3.2..jar:/home/spark/spark-1.4.-bin-hadoop2./lib/datanucleus-api-jdo-3.2..jar:/home/spark/spark-1.4.-bin-hadoop2./lib/datanucleus-rdbms-3.2..jar:/home/spark/hadoop-2.6./etc/hadoop/ -Xms512m -Xmx512m -XX:MaxPermSize=128m org.apache.spark.deploy.master.Master --ip spark01 --port  --webui-port
========================================
// :: INFO master.Master: Registered signal handlers for [TERM, HUP, INT]
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO spark.SecurityManager: Changing view acls to: spark
// :: INFO spark.SecurityManager: Changing modify acls to: spark
// :: INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
// :: INFO slf4j.Slf4jLogger: Slf4jLogger started
// :: INFO Remoting: Starting remoting
// :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@spark01:7077]
// :: INFO util.Utils: Successfully started service 'sparkMaster' on port .
// :: INFO server.Server: jetty-.y.z-SNAPSHOT
// :: INFO server.AbstractConnector: Started SelectChannelConnector@spark01:
// :: INFO util.Utils: Successfully started service on port .
// :: INFO rest.StandaloneRestServer: Started REST server for submitting applications on port
// :: INFO master.Master: Starting Spark master at spark://spark01:7077
// :: INFO master.Master: Running Spark version 1.4.
// :: INFO server.Server: jetty-.y.z-SNAPSHOT
// :: INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:
// :: INFO util.Utils: Successfully started service 'MasterUI' on port .
// :: INFO ui.MasterWebUI: Started MasterWebUI at http://192.168.244.147:8080
// :: INFO master.Master: I have been elected leader! New state: ALIVE

从日志中也可看出,master启动正常

下面来看看master的 web管理界面,默认在8080端口

启动worker

[spark@spark01 spark-1.4.0-bin-hadoop2.6]$ sbin/start-slaves.sh spark://spark01:7077

spark01: Warning: Permanently added 'spark01,192.168.244.147' (ECDSA) to the list of known hosts.
spark@spark01's password:
spark01: starting org.apache.spark.deploy.worker.Worker, logging to /home/spark/spark-1.4.-bin-hadoop2./sbin/../logs/spark-spark-org.apache.spark.deploy.worker.Worker--spark01.out

输入spark01上spark用户的密码

可通过日志的信息来确认workder是否正常启动,因信息太多,在这里就不贴出了。

[spark@spark01 spark-1.4.0-bin-hadoop2.6]$ cd logs/

[spark@spark01 logs]$ cat spark-spark-org.apache.spark.deploy.worker.Worker-1-spark01.out

启动spark shell

[spark@spark01 spark-1.4.0-bin-hadoop2.6]$ bin/spark-shell --master spark://spark01:7077

// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO spark.SecurityManager: Changing view acls to: spark
// :: INFO spark.SecurityManager: Changing modify acls to: spark
// :: INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
// :: INFO spark.HttpServer: Starting HTTP Server
// :: INFO server.Server: jetty-.y.z-SNAPSHOT
// :: INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:
// :: INFO util.Utils: Successfully started service 'HTTP class server' on port .
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.4.
/_/ Using Scala version 2.10. (Java HotSpot(TM) -Bit Server VM, Java 1.7.0_79)
Type in expressions to have them evaluated.
Type :help for more information.
// :: INFO spark.SparkContext: Running Spark version 1.4.
// :: INFO spark.SecurityManager: Changing view acls to: spark
// :: INFO spark.SecurityManager: Changing modify acls to: spark
// :: INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
// :: INFO slf4j.Slf4jLogger: Slf4jLogger started
// :: INFO Remoting: Starting remoting
// :: INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@192.168.244.147:43850]
// :: INFO util.Utils: Successfully started service 'sparkDriver' on port .
// :: INFO spark.SparkEnv: Registering MapOutputTracker
// :: INFO spark.SparkEnv: Registering BlockManagerMaster
// :: INFO storage.DiskBlockManager: Created local directory at /tmp/spark-7b7bd4bd-ff20-4e3d-a354-61a4ca7c4b2f/blockmgr-0e855210---b5e3-151e0c096c15
// :: INFO storage.MemoryStore: MemoryStore started with capacity 265.4 MB
// :: INFO spark.HttpFileServer: HTTP File server directory is /tmp/spark-7b7bd4bd-ff20-4e3d-a354-61a4ca7c4b2f/httpd-56ac16d2-dd82-41cb-99d7-4d11ef36b42e
// :: INFO spark.HttpServer: Starting HTTP Server
// :: INFO server.Server: jetty-.y.z-SNAPSHOT
// :: INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:
// :: INFO util.Utils: Successfully started service 'HTTP file server' on port .
// :: INFO spark.SparkEnv: Registering OutputCommitCoordinator
// :: INFO server.Server: jetty-.y.z-SNAPSHOT
// :: INFO server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:
// :: INFO util.Utils: Successfully started service 'SparkUI' on port .
// :: INFO ui.SparkUI: Started SparkUI at http://192.168.244.147:4040
// :: INFO client.AppClient$ClientActor: Connecting to master akka.tcp://sparkMaster@spark01:7077/user/Master...
// :: INFO cluster.SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app--
// :: INFO client.AppClient$ClientActor: Executor added: app--/ on worker--192.168.244.147- (192.168.244.147:) with cores
// :: INFO cluster.SparkDeploySchedulerBackend: Granted executor ID app--/ on hostPort 192.168.244.147: with cores, 512.0 MB RAM
// :: INFO client.AppClient$ClientActor: Executor updated: app--/ is now LOADING
// :: INFO client.AppClient$ClientActor: Executor updated: app--/ is now RUNNING
// :: INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port .
// :: INFO netty.NettyBlockTransferService: Server created on
// :: INFO storage.BlockManagerMaster: Trying to register BlockManager
// :: INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.244.147: with 265.4 MB RAM, BlockManagerId(driver, 192.168.244.147, )
// :: INFO storage.BlockManagerMaster: Registered BlockManager
// :: INFO cluster.SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
// :: INFO repl.SparkILoop: Created spark context..
Spark context available as sc.
// :: INFO hive.HiveContext: Initializing execution hive, version 0.13.
// :: INFO metastore.HiveMetaStore: : Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
// :: INFO metastore.ObjectStore: ObjectStore, initialize called
// :: INFO DataNucleus.Persistence: Property datanucleus.cache.level2 unknown - will be ignored
// :: INFO DataNucleus.Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be ignored
// :: INFO cluster.SparkDeploySchedulerBackend: Registered executor: AkkaRpcEndpointRef(Actor[akka.tcp://sparkExecutor@192.168.244.147:46741/user/Executor#-2043358626]) with ID 0
// :: WARN DataNucleus.Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
// :: INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.244.147: with 265.4 MB RAM, BlockManagerId(, 192.168.244.147, )
// :: WARN DataNucleus.Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
// :: INFO metastore.ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"
// :: INFO metastore.MetaStoreDirectSql: MySQL check failed, assuming we are not on mysql: Lexical error at line , column . Encountered: "@" (), after : "".
// :: INFO DataNucleus.Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
// :: INFO DataNucleus.Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
// :: INFO DataNucleus.Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
// :: INFO DataNucleus.Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
// :: INFO metastore.ObjectStore: Initialized ObjectStore
// :: WARN metastore.ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 0.13.1aa
// :: INFO metastore.HiveMetaStore: Added admin role in metastore
// :: INFO metastore.HiveMetaStore: Added public role in metastore
// :: INFO metastore.HiveMetaStore: No user is added in admin role, since config is empty
// :: INFO session.SessionState: No Tez session required at this point. hive.execution.engine=mr.
// :: INFO repl.SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext. scala>

打开spark shell以后,可以写一个简单的程序,say hello to the world

scala> println("helloworld")
helloworld

再来看看spark的web管理界面,可以看出,多了一个Workders和Running Applications的信息

至此,Spark的伪分布式环境搭建完毕,

有以下几点需要注意:

1. 上述中的Maven和SBT是非必须的,只是为了后续的源码编译,所以,如果只是单纯的搭建Spark环境,可不用下载Maven和SBT。

2. 该Spark的伪分布式环境其实是集群的基础,只需修改极少的地方,然后copy到slave节点上即可,鉴于篇幅有限,后文再表。

搭建Spark的单机版集群的更多相关文章

  1. 搭建Spark高可用集群

      Spark简介 官网地址:http://spark.apache.org/ Apache Spark™是用于大规模数据处理的统一分析引擎. 从右侧最后一条新闻看,Spark也用于AI人工智能 sp ...

  2. 高效搭建Spark全然分布式集群

    写在前面一: 本文具体总结Spark分布式集群的安装步骤,帮助想要学习Spark的技术爱好者高速搭建Spark的学习研究环境. 写在前面二: 使用软件说明 约定,Spark相关软件存放文件夹:/usr ...

  3. 基于 ZooKeeper 搭建 Spark 高可用集群

    一.集群规划 二.前置条件 三.Spark集群搭建         3.1 下载解压         3.2 配置环境变量         3.3 集群配置         3.4 安装包分发 四.启 ...

  4. Spark学习之路(七)—— 基于ZooKeeper搭建Spark高可用集群

    一.集群规划 这里搭建一个3节点的Spark集群,其中三台主机上均部署Worker服务.同时为了保证高可用,除了在hadoop001上部署主Master服务外,还在hadoop002和hadoop00 ...

  5. Spark 系列(七)—— 基于 ZooKeeper 搭建 Spark 高可用集群

    一.集群规划 这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 Worker 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop0 ...

  6. 入门大数据---基于Zookeeper搭建Spark高可用集群

    一.集群规划 这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 Worker 服务.同时为了保证高可用,除了在 hadoop001 上部署主 Master 服务外,还在 hadoop0 ...

  7. Spark高可用集群搭建

    Spark高可用集群搭建 node1    node2    node3   1.node1修改spark-env.sh,注释掉hadoop(就不用开启Hadoop集群了),添加如下语句 export ...

  8. spark教程(一)-集群搭建

    spark 简介 建议先阅读我的博客 大数据基础架构 spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 类似,不同的是,mapreduce 把中间结果 写入 hdfs ...

  9. CentOS7.5搭建spark2.3.1集群

    一 下载安装包 1 官方下载 官方下载地址:http://spark.apache.org/downloads.html 2  安装前提 Java8         安装成功 zookeeper  安 ...

随机推荐

  1. java分享第十七天-02(封装操作excel类)

     java解析EXCEL用的是POI的JAR包,兼容EXCEL2003及2007+版本的EXCEL所需要的JAR包:poi-3.8.jarpoi-ooxml.jarpoi-ooxml-schemas. ...

  2. codeforces 360 C

    C - NP-Hard Problem Description Recently, Pari and Arya did some research about NP-Hard problems and ...

  3. Excel Sheet Column Title

    Given a positive integer, return its corresponding column title as appear in an Excel sheet. For exa ...

  4. Insert or Merge && Insertion or Heap Sort

    原题连接:https://pta.patest.cn/pta/test/1342/exam/4/question/27102 题目如下: According to Wikipedia: Inserti ...

  5. 使用canvas绘制一个时钟

    周末学习canvas的一些基础功能,顺带写了一个基础的时钟.现在加工一下,做的更好看一点,先放上效果图: 谈一些自己的理解: (1).要绘制一个新的样式(不想被其他样式影响,或者影响到其他样式),那么 ...

  6. IIS Community Newsletter June 2013

    Announcements Windows 2012 Server R2 preview released Windows Server 2012 R2 provides a wide range o ...

  7. 为jQuery添加Webkit的触摸方法支持

    前些日子收到邮件,之前兼职的一个项目被转给了其他人,跟进的人来问我相关代码的版权问题. 我就呵呵了. 这段代码是我在做13年一份兼职的时候无聊加上去的,为jQuery添加触摸事件的支持.因为做得有点无 ...

  8. Go语言实战 - revel框架教程之权限控制

    一个站点上面最基本都会有三种用户角色,未登录用户.已登录用户和管理员.这一次我们就来看看在revel框架下如何进行权限控制. 因为revel是MVC结构的,每一个url其实都会映射到一个具体的Cont ...

  9. [ASP.NET MVC 小牛之路]08 - Area 使用

    ASP.NET MVC允许使用 Area(区域)来组织Web应用程序,每个Area代表应用程序的不同功能模块.这对于大的工程非常有用,Area 使每个功能模块都有各自的文件夹,文件夹中有自己的Cont ...

  10. Jmeter 使用Jmeter与Badboy进行压力测试

    1. 介绍 Badboy是一个录制请求的工具,这里用它来生成文件给JMeter用. JMeter是一个用java写的开源的性能测试工具,用于模拟在服务器.网络或者其他对象上附加高负载以测试他们提供服务 ...