First One

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 690    Accepted Submission(s): 205

Problem Description
soda has an integer array a1,a2,…,an.
Let S(i,j) be
the sum of ai,ai+1,…,aj.
Now soda wants to know the value below:

∑i=1n∑j=in(⌊log2S(i,j)⌋+1)×(i+j)

Note: In this problem, you can consider log20 as
0.

 
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:



The first line contains an integer n (1≤n≤105),
the number of integers in the array.

The next line contains n integers a1,a2,…,an (0≤ai≤105).
 
Output
For each test case, output the value.
 
Sample Input
1
2
1 1
 
Sample Output
12
 
Source
 

题目大意:对题目中的式子求结果。

解题思路:由于0<=ai<=10^5,0<n<=10^5,所以0<=S(i,j)<10^12<2^34,设k=⌊log2S(i,j)⌋+1则1<=k<=34,那么我们

每次枚举k时,求解出全部符合条件的(i+j),求和就可以。

而对于每个k,求解(i+j)时。先预处理出s[i](s[i]=a1+……+ai。则sum(i,j)=s[j]-s[i-1]),那么接下来仅仅需找到全部

满足2^(k-1)<=sum(i,j)<=2^k-1的(i+j)就可以。

对于求(i+j),我们再次枚举i,对每个i。求解出j的一个区间[l,r],使得对当前的i,有当l<=j<=r时,2^(k-1)

<=sum(i,j)<=2^k-1成立。那么对于当前的k,i,满足条件的i。j区间为[i,j](l<=j<=r)。这些区间相应同一个k和同一个i,这些区间的(i+j)的总和为:i*(r-l+1)+(r+l)*(r-l+1)/2。

枚举全然部的k和i,将全部和累加。

对于求解区间[l,r],如果k=a,在枚举i=b时,得到j的区间[L1,R1],那么同样的k,在枚举i=b+1时,得到j的区间[L2,R2]

一定不在区间[L1,R1]的左边,简单的说就是L2>L1。R2>R1。

因此查找l。r时能够降低范围。

代码例如以下:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#include <limits.h>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-6)
#define inf (1<<28)
#define sqr(x) (x) * (x)
#define mod 1000000007
using namespace std;
typedef long long ll;
typedef unsigned long long ULL; ll fl[35]={0,0,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864,134217728,268435456,536870912,1073741824,2147483648,4294967296,8589934592};
ll fr[35]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535,131071,262143,524287,1048575,2097151,4194303,8388607,16777215,33554431,67108863,134217727,268435455,536870911,1073741823,2147483647,4294967295,8589934591,17179869183};
ll s[100005];
int main()
{
ll i,j,k,n,a,l,r,t;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d",&n);
for(i=1;i<=n;i++)
{
scanf("%I64d",&a);
s[i]=s[i-1]+a;
}
ll ans=0;
for(k=1;k<=34;k++)
{
l=1;
r=0; //移位操作控制sum(i,j)的范围。也能够用数组
//fl= k==1? 0:(1ll<<(k-1));fr=(1ll<<k)-1;
for(i=1;i<=n;i++)
{
l=max(i,l);
while(l<=n&&s[l]-s[i-1]<fl[k])//while(l<=n&&s[l]-s[i-1]<fl)
l++;
r=max(l-1,r);
while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr[k])//while(r+1<=n&&s[r+1]-s[i-1]>=fl[k]&&s[r+1]-s[i-1]<=fr)
r++;
if(l<=r)
ans+=(i*(r-l+1)+(r+l)*(r-l+1)/2)*k;
//ans+=(i+l+i+r)*(r-l+1)/2*k;
}
}
printf("%I64d\n",ans);
}
return 0;
}

HDU 5358 First One(枚举)的更多相关文章

  1. 2015多校第6场 HDU 5358 First One 枚举,双指针

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5358 题意:如题. 解法:观察式子发现,由于log函数的存在,使得这个函数的值域<=34,然后我 ...

  2. HDU 5358 尺取法+枚举

    题意:给一个数列,按如下公式求和. 分析:场上做的时候,傻傻以为是线段树,也没想出题者为啥出log2,就是S(i,j) 的二进制表示的位数.只能说我做题依旧太死板,让求和就按规矩求和,多考虑一下就能发 ...

  3. HDU 5358 First One(枚举)

    这道题假设依照表达式一个个来算肯定超时,下午时候想了一个O(nlogn*logn)的算法.可是t了.由于这道题卡的很紧几百个例子,必须nlogn的算法才干够ac 回到这道题,考虑log(sum(i,j ...

  4. Hdu 5358 First One (尺取法+枚举)

    题目链接: Hdu 5358 First One 题目描述: 数组a有n个元素,S[i,j]定义为a[i]+a[i+1]+.....+a[j],问:这个死东西等于多少? 解题思路: 二分肯定超,这个题 ...

  5. hdu 5358 First One

    题目链接:hdu 5358 思路不难理解,就是个尺取法而已,floor(log2X) + 1 就是求 X 的二进制表示的位数,对于题目来说这个值最多只是 30+,从这里入手开始枚举,运用尺取法可以达到 ...

  6. HDU 5358 多校第6场 First One

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  7. HDU 5358(2015多校联合训练赛第六场1006) First One (区间合并+常数优化)

    pid=5358">HDU 5358 题意: 求∑​i=1​n​​∑​j=i​n​​(⌊log​2​​S(i,j)⌋+1)∗(i+j). 思路: S(i,j) < 10^10 & ...

  8. hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

  9. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

随机推荐

  1. Beginning Python From Novice to Professional (9) - Socket

    Socket 小型server: #!/usr/bin/env python import socket s = socket.socket() host = socket.gethostname() ...

  2. mysqli简介

    mysqli简介 PHP MySQLi 简介 PHP MySQLi = PHP MySQL Improved! MySQLi 函数允许您访问 MySQL 数据库服务器. 注释:MySQLi 扩展被设计 ...

  3. ES内存持续上升问题定位

      https://discuss.elastic.co/t/memory-usage-of-the-machine-with-es-is-continuously-increasing/23537/ ...

  4. 杂项-报表:Formula One(Active电子表格控件)

    ylbtech-杂项-报表:Formula One(Active电子表格控件) Formula One是一款应用软件,是由Visual Components公司开发的基于Windows平台的.类似于E ...

  5. oracle 优化之组合索引

    组合索引适用场景: 1.适用在单独查询返回记录很多,组合查询后忽然返回记录很少的情况: 比如where 学历=硕士以上 返回不少的记录 比如where 职业=收银员 同样返回不少的记录 于是无论哪个条 ...

  6. 【转】SQL语句删除和添加外键、主键

    --删除外键 语法:alter table 表名 drop constraint 外键约束名 如: alter table Stu_PkFk_Sc drop constraint FK_s alter ...

  7. 洛谷P4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

  8. UDP协议总结

    我们已经讲解了物理层.连接层和网络层.最开始的连接层协议种类繁多(Ethernet.Wifi.ARP等等).到了网络层,我们只剩下一个IP协议(IPv4和IPv6是替代关系).进入到传输层(trans ...

  9. IntelliJ Idea下Go项目开启Debug调试

    1.新建Go项目,创建入口go文件(Test1.go),随便写点啥,比如: package main import "fmt" func main(){ fmt.Println(& ...

  10. Codeforces Round #284 (Div. 2) A

    解题思路:给出 n个电影的精彩时段(a[i],b[i]),和每次可以跳过的时间x,问要看完所有的精彩时刻,至少需要看多长时间的电影. 因为要时间最少,所有除了精彩时刻的电影则能跳过就跳过(用取余来算) ...