参考:Wiki Cross product

Coordinate notation

The standard basis vectors i, j, and k satisfy the following equalities in a right hand coordinate system:

which imply, by the anticommutativity of the cross product, that

The definition of the cross product also implies that

These equalities, together with the distributivity and linearity of the cross product (but both do not follow easily from the definition given above), are sufficient to determine the cross product of any two vectors u and v. Each vector can be defined as the sum of three orthogonal components parallel to the standard basis vectors:

Their cross product u × v can be expanded using distributivity:

This can be interpreted as the decomposition of u × v into the sum of nine simpler cross products involving vectors aligned with i, j, or k. Each one of these nine cross products operates on two vectors that are easy to handle as they are either parallel or orthogonal to each other. From this decomposition, by using the above-mentioned equalities and collecting similar terms, we obtain:

meaning that the three scalar components of the resulting vector s = s1i + s2j + s3k = u × v are

Using column vectors, we can represent the same result as follows:

Matrix notation[edit]

Use of Sarrus's rule to find the cross product of u and v

The cross product can also be expressed as the formal[note 1] determinant:

向量叉乘 Cross product的更多相关文章

  1. 向量 dot cross product 点积叉积 几何意义

    向量 dot cross product 点积叉积 几何意义 有向量 a b 点积 a * b = |a| * |b| * cosθ 几何意义: 1. a * b == 0,则 a ⊥ b 2. a ...

  2. 向量点积(Dot Product),向量叉积(Cross Product)

    参考的是<游戏和图形学的3D数学入门教程>,非常不错的书,推荐阅读,老外很喜欢把一个东西解释的很详细. 1.向量点积(Dot Product) 向量点积的结果有什么意义?事实上,向量的点积 ...

  3. js判断向量叉点 并求出交点坐标

     代码如下可以直接运行,判断向量相交并求出交点坐标 <!DOCTYPE html> <html> <head> <meta http-equiv=" ...

  4. Cross Product

    Cross Product These are two vectors: They can be multiplied using the "Cross Product" (als ...

  5. 【十天自制软渲染器】DAY 03:画一个三角形(向量叉乘算法 & 重心坐标算法)

    如果你喜欢我写的文章,可以把我的公众号设为星标 ,这样每次有更新就可以及时推送给你啦. 前面两天画了点和线,今天我们来画一个最简单也是最强大的面--三角形. 本文主要讲解三角形绘制算法的推导和思路(只 ...

  6. matlab cross 3*1 向量叉乘

    一定是1*3  或者3*1 的向量才可以叉乘 A=[1 2 3] B=[4 5 6] cross(A,B) ans=[-3 6 -3] 解决机器人微分运动量之间的等价关系

  7. nyoj-952-最大四边形 (向量叉乘)

    题目链接 /* Name:nyoj-952-最大四边形 Copyright: Author: Date: 2018/4/27 10:46:24 Description: 枚举一条对角线,再选择一个 看 ...

  8. nyoj-1016-德莱联盟(向量叉乘判断线段相交)

    叉乘的坐标表示: A(X1,Y1), B(X2, Y2), C(XC,YC), D(XD, YD);AB = (X2-X1, Y2-Y1);CD = (XD-XC, YD-YC); 向量AB,CD的叉 ...

  9. HDU 2036 求任意多边形面积向量叉乘

    三角形的面积可以使用向量的叉积来求: 对于 三角形的面积 等于: [(x2 - x1)*(y3 - y1)- ( y2 - y1 ) * ( x3 - x1 )  ] / 2.0 但是面积是有方向的, ...

随机推荐

  1. 【Oracle】服务器端监听配置

    一.静态监听 创建端口为1521的监听,静态注册,本机ip:192.168.10.2 [oracle@localhost ~]$ vi /u01/app/oracle/product/11.2.0/d ...

  2. JSP_内置对象_out

    out对象是JspWriter类的实例,是向客户端输出内容的常用对象,常用方法如下: void println() 向客户端打印字符串 void clear() 清除缓冲区的内容,如果在flush之后 ...

  3. 我所理解的monad(4):函子(functor)是什么--可把范畴简单的看成高阶类型

    大致介绍了幺半群(monoid)后,我们重新回顾最初引用wadler(haskell委员会成员,把monad引入haskell的家伙)的那句话: 现在我们来解读这句话中包含的另一个概念:自函子(End ...

  4. kafkaAPI

    使用方法见官网API介绍: https://kafka.apache.org/22/javadoc/index.html?org/apache/kafka/clients/consumer/Kafka ...

  5. idea中git回滚到指定分支

    1.git - > show history,选中回滚的指定版本,右击copy revision number 粘出版本号 2.git -> reset hard 出险新页面之后,选中ha ...

  6. Uoj 52. 【UR #4】元旦激光炮 神题+交互题

    Code: #include "kth.h" #include<iostream> int minn(int x,int y){return x<y?x:y;}; ...

  7. python 生成HTmL报告页面 V1.2

    上代码 # -*- coding=utf-8 -*- import time,os #数据部分 func_dict={"funcname":"模块1",} fu ...

  8. eas中删除原来的监听事件添加新的监听事件

    kdtEntrys.removeKDTEditListener(kdtEntrys.getListeners(KDTEditListener.class)[0]);  kdtEntrys.addKDT ...

  9. /proc/sys/vm man手册

    Manual page proc(5) line 1967 (press h for help or q to quit) /proc/sys/vm This directory contains f ...

  10. [luogu1447 NOI2010] 能量采集 (容斥原理)

    传送门 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的 ...