BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484
题目链接:
(Luogu)https://www.luogu.org/problemnew/show/P3172
(BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=3930
题目大意:
给定N,M,L,R,从区间[L,R]内选出N个整数使得它们的gcd恰好为m,求合法的选数方案数对1e9+7取模的值。1<=N,M,L,R<=1e9, R-L<=1e5.
思路分析:
gcd? 那就莫比乌斯反演好了。
令F(m)表示从[L,R]中选出N个数,其gcd为m的倍数的方案数。
f(m)表示从[L,R]中选出N个数,其gcd 恰好为m方案数。(莫比乌斯反演常见做法)
我们要求的是f(m),为了简化运算,我们令l等于大于等于L的最小的m的倍数,r等于小于等于L的最大的m的倍数。然后l/=m,r/=m,问题转化为求f(1). (莫比乌斯反演常见做法)
根据莫比乌斯反演公式$$F(n)=\sum_{n|d} f(d), f(n)=\sum_{n|d}\mu (\frac{d}{n})F(d)$$, F(n)可以O(1)求得,直接反演即可。
现在面临两个问题:
- F(x)和f(x)的定义域是什么?
- 如何O(1)求F(x)?
先来解决第二个问题:
F(x)其实就是[l,r]内是x的倍数的数的个数的N次方,可以用快速幂求得。具体见代码getF函数。
难点在于第一个问题:
首先我们知道,定义域不超过r. 而r=R/M是1e9级别的,因此必须优化,发现更多的性质。
F(x)既然表示选出N个数gcd为x的方案数,那我们观察以下式子$$\gcd (x,y)\le y-x (x<y)$$如果选的数不全相等,那它们的gcd一定不会超过r-l, 也就是F(x)和f(x)的定义域就会缩小到r-l, 而r-l是1e5级别的!这就很美妙了!
现在只要处理一下选出的所有数全相等的情况了。
为了缩小定义域,我们给F(x)和f(x)分别添加一个条件: F(x)表示表示从[L,R]中选出不全相等的 N个数,其gcd为x的倍数的方案数,f(x)表示表示从[L,R]中选出不全相等的 N个数,其gcd 恰好为x的方案数,枚举定义域[1,r-l]莫比乌斯反演求出f(1)即可。
而定义变了以后,O(1)计算F(x)的方法也出现了变动: $$F(x)=a^N-a$$其中a为[l,r]内是x的倍数的数的个数。公式解释: 如果是随意选,共有\(a^N\)种选法,然后去掉全部相等的选法,选N个全部相等的数就相当于只选一个数,因此有a种选法,从\(a^N\)中扣除。
以上是计算f(1)的方法。
f(1)算完后,还要加上从[l,r]中选N个全相等的数使得gcd为1的方案数。那显然唯一方案就是全选1,如果1被包含在区间[l,r]中答案就是f(1)+1,否则答案为f(1).
代码实现:
#include<cstdio>
using namespace std;
const int N = 1e5+1;
const long long P = 1e9+7;
long long n,m,lb,rb;
int mu[N+4];
long long p[N+4];
bool f[N+4];
int pn;
void Mobius()
{
mu[1] = 1; pn = 0;
for(int i=2; i<=N; i++)
{
if(!f[i]) {pn++; p[pn] = i; mu[i] = -1;}
for(int j=1; j<=pn && i*p[j]<=N; j++)
{
f[p[j]*i] = true;
if(i%p[j]==0) {mu[i*p[j]] = 0; break;}
else mu[i*p[j]] = -mu[i];
}
}
}
long long quickpow(long long a,long long b)
{
a %= P;
long long cur = a,ret = 1ll;
for(int i=0; b; i++)
{
if(b&(1ll<<i)) {ret *= cur; ret %= P; b-=(1ll<<i);}
cur *= cur; cur %= P;
}
return ret;
}
long long getF(long long a)
{
long long lt,rt;
if(lb%a>0ll) lt = lb/a+1;
else lt = lb/a;
rt = rb/a;
return (quickpow(rt-lt+1,n)-(rt-lt+1)+P)%P;
}
int main()
{
Mobius();
scanf("%lld%lld%lld%lld",&n,&m,&lb,&rb);
if(lb%m>0ll) lb = lb/m+1;
else lb = lb/m;
rb/=m;
long long nn = rb-lb,ans = 0ll;
for(int i=1; i<=nn; i++)
{
ans += mu[i]*getF(i);
ans = (ans+P)%P;
}
if(lb<=1 && 1<=rb) {ans++; ans%=P;}
printf("%lld\n",ans);
return 0;
}
BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)的更多相关文章
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)
题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...
随机推荐
- 创造HTTPS的是个神
HTTP 是一个明文传输的协议,很多网络监听工具都可以轻易窃取网络中传输的用户信息,如密码,信用卡, 直到后来发明HTTPS, 世界一下子安静了 Why HTTPS? HTTPS可以保证用户提交的信息 ...
- linux下获取按键响应事件【转】
本文转载自:https://my.oschina.net/u/157503/blog/91548 1.问题 通过一个死循环将读取键盘对应的设备文件将触发键盘事件在屏幕上打印出来,按esc退出程序 代码 ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
- hdu 1213(并查集模版题)
How Many Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- poj--1101--The Game(bfs)
The Game Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9746 Accepted: 2967 Descript ...
- C Tricks(十六)—— 复制字符串
while (*s++ = *t++); // target ⇒ source // 对于 C 语言而言,赋值运算符返回左值
- Azure Command Line(Azure CLI)指南
1.安装. MSI安装程序:https://aka.ms/installazurecliwindows https://docs.microsoft.com/zh-cn/cli/azure/insta ...
- 【NOIP2018】 游记
All ended? [day 0] 一点感觉没有,不过翘掉了早上的课(当然还有前三周的课),然后刚想睡一会儿,就被通知要上车了/难受 在车上玩了一会儿早上下的Super Mario(主要是早上刷了一 ...
- iOS 点击事件传递及响应
1.iOS中的事件 iOS中的事件可以分为3大类型: 触摸事件 加速计事件 远程控制事件这里我们只讨论iOS中的触摸事件. 1.1响应者对象(UIResponder) 在iOS中不是任何对象都能处理事 ...
- Python迭代器(斐波拉切数列实例)
将一个容器通过iter()函数处理后,就变成了迭代器.迭代器有2个魔法方法__iter__.__next__,一个迭代器必须实现__iter__,这个方法实际上是返回迭代器本身(return self ...