手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484

题目链接:

(Luogu)https://www.luogu.org/problemnew/show/P3172

(BZOJ)http://www.lydsy.com/JudgeOnline/problem.php?id=3930

题目大意:

给定N,M,L,R,从区间[L,R]内选出N个整数使得它们的gcd恰好为m,求合法的选数方案数对1e9+7取模的值。1<=N,M,L,R<=1e9, R-L<=1e5.

思路分析:

gcd? 那就莫比乌斯反演好了。

令F(m)表示从[L,R]中选出N个数,其gcd为m的倍数的方案数。

f(m)表示从[L,R]中选出N个数,其gcd 恰好为m方案数。(莫比乌斯反演常见做法)

我们要求的是f(m),为了简化运算,我们令l等于大于等于L的最小的m的倍数,r等于小于等于L的最大的m的倍数。然后l/=m,r/=m,问题转化为求f(1). (莫比乌斯反演常见做法)

根据莫比乌斯反演公式$$F(n)=\sum_{n|d} f(d), f(n)=\sum_{n|d}\mu (\frac{d}{n})F(d)$$, F(n)可以O(1)求得,直接反演即可。

现在面临两个问题:

  1. F(x)和f(x)的定义域是什么?
  2. 如何O(1)求F(x)?

先来解决第二个问题:

F(x)其实就是[l,r]内是x的倍数的数的个数的N次方,可以用快速幂求得。具体见代码getF函数。

难点在于第一个问题:

首先我们知道,定义域不超过r. 而r=R/M是1e9级别的,因此必须优化,发现更多的性质。

F(x)既然表示选出N个数gcd为x的方案数,那我们观察以下式子$$\gcd (x,y)\le y-x (x<y)$$如果选的数不全相等,那它们的gcd一定不会超过r-l, 也就是F(x)和f(x)的定义域就会缩小到r-l, 而r-l是1e5级别的!这就很美妙了!

现在只要处理一下选出的所有数全相等的情况了。

为了缩小定义域,我们给F(x)和f(x)分别添加一个条件: F(x)表示表示从[L,R]中选出不全相等的 N个数,其gcd为x的倍数的方案数,f(x)表示表示从[L,R]中选出不全相等的 N个数,其gcd 恰好为x的方案数,枚举定义域[1,r-l]莫比乌斯反演求出f(1)即可。

而定义变了以后,O(1)计算F(x)的方法也出现了变动: $$F(x)=a^N-a$$其中a为[l,r]内是x的倍数的数的个数。公式解释: 如果是随意选,共有\(a^N\)种选法,然后去掉全部相等的选法,选N个全部相等的数就相当于只选一个数,因此有a种选法,从\(a^N\)中扣除。

以上是计算f(1)的方法。

f(1)算完后,还要加上从[l,r]中选N个全相等的数使得gcd为1的方案数。那显然唯一方案就是全选1,如果1被包含在区间[l,r]中答案就是f(1)+1,否则答案为f(1).

代码实现:

#include<cstdio>
using namespace std; const int N = 1e5+1;
const long long P = 1e9+7;
long long n,m,lb,rb;
int mu[N+4];
long long p[N+4];
bool f[N+4];
int pn; void Mobius()
{
mu[1] = 1; pn = 0;
for(int i=2; i<=N; i++)
{
if(!f[i]) {pn++; p[pn] = i; mu[i] = -1;}
for(int j=1; j<=pn && i*p[j]<=N; j++)
{
f[p[j]*i] = true;
if(i%p[j]==0) {mu[i*p[j]] = 0; break;}
else mu[i*p[j]] = -mu[i];
}
}
} long long quickpow(long long a,long long b)
{
a %= P;
long long cur = a,ret = 1ll;
for(int i=0; b; i++)
{
if(b&(1ll<<i)) {ret *= cur; ret %= P; b-=(1ll<<i);}
cur *= cur; cur %= P;
}
return ret;
} long long getF(long long a)
{
long long lt,rt;
if(lb%a>0ll) lt = lb/a+1;
else lt = lb/a;
rt = rb/a;
return (quickpow(rt-lt+1,n)-(rt-lt+1)+P)%P;
} int main()
{
Mobius();
scanf("%lld%lld%lld%lld",&n,&m,&lb,&rb);
if(lb%m>0ll) lb = lb/m+1;
else lb = lb/m;
rb/=m;
long long nn = rb-lb,ans = 0ll;
for(int i=1; i<=nn; i++)
{
ans += mu[i]*getF(i);
ans = (ans+P)%P;
}
if(lb<=1 && 1<=rb) {ans++; ans%=P;}
printf("%lld\n",ans);
return 0;
}

BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)的更多相关文章

  1. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  2. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演

    https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...

  3. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  4. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  5. BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛

    求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$   $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...

  6. luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛

    link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd ...

  7. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  8. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  9. luogu 4844 LJJ爱数数 (莫比乌斯反演+数学推导)

    题目大意:求满足gcd(a,b,c)==1,1/a+1/b=1/c,a,b,c<=n的{a,b,c}有序三元组个数 因为题目里有LJJ我才做的这道题 出题人官方题解https://www.cnb ...

随机推荐

  1. C#备份及还原数据库的实现代码(粗略) // 利用C#还原数据库(SQL SERVER)备份文件到指定路径

    C#数据库备份及还原 1.在用户的配置时,我们需要列出当前局域网内所有的数据库服务器,并且要列出指定服务器的所有数据库,实现代码如下: 取得数据库服务器列表: public ArrayList Get ...

  2. UVA 10006(素数打表+快速幂)

    当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加密算法 ...

  3. LA4122

    哈夫曼树+搜索 抄了抄代码 先开始不知道怎么限制哈夫曼树,然后看了看代码,是用bfs序来限制.因为每个节点的右子树节点肯定不小于左儿子,同一层也是.所以先搞出bfs序,然后搜索,判断每一层右边是否大于 ...

  4. 第7章 Android中访问网络资源

    http://developer.android.com/index.html->https://developer.android.com/index.html https://develop ...

  5. [Spring] Spring Boot 生态

  6. 最短路( spfa)

    最短路 http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2622 #include <std ...

  7. js基本功能大全

    1.javascript的数组API: //定义数组 var pageIds = new Array(); pageIds.push('A'); 数组长度 pageIds.length; //shif ...

  8. golang 获取statuscode

    最近日志打印的时候需要打印状态码,但是因为interface的原因直接获取失败,http.Request里面的response不知道怎么使用,所以就自己重写writeheader,write来截取st ...

  9. jQuery获取及设置单选框、多选框、文本框

    获取一组radio被选中项的值 var item = $("input[@name=items][@checked]").val(); 获取select被选中项的文本 var it ...

  10. WPF播放器

    最近由于工作需要,需要做一个播放软件,在网上参考了很多例子,园子里有很多代码.其中最多的就是wpf自带的MediaElement控件,或者VLC视频播放器. 先附我自己查询资料的链接: MediaEm ...