Georgia and Bob
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7233   Accepted: 2173

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example: 

Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game.

Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out.

Given the initial positions of the n chessmen, can you predict who will finally win the game?

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win
Georgia will win

Source

 
转化成nim游戏,两个石子之间的间隔就是石子个数
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX_N = ;
int p[MAX_N]; int main()
{
int t;
scanf("%d",&t);
while(t--) {
int N;
scanf("%d",&N);
for(int i = ; i < N; ++i) {
scanf("%d",&p[i]);
}
if(N % == ) p[N++] = ;
sort(p, p + N); int x = ;
for(int i = ; i + < N; i += ) {
x ^= (p[i + ] - p[i] - );
} if(x == ) printf("Bob will win\n");
else printf("Georgia will win\n");
}
//cout << "Hello world!" << endl;
return ;
}

poj 1704的更多相关文章

  1. POJ 1704 Georgia and Bob(阶梯博弈+证明)

    POJ 1704 题目链接 关于阶梯博弈有如下定理: 将所有奇数阶梯看作n堆石头,做Nim,将石头从奇数堆移动到偶数堆看作取走石头,同样地,异或值不为0(利己态)时,先手必胜. 定理证明看此博:htt ...

  2. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  3. 阶梯博弈&POJ 1704

    阶梯博弈: 先借用别人的一幅图片.(1阶梯之前还有一个0阶梯未画出) 阶梯博弈的最初定义是这样的:每一个阶梯只能向它的前一个阶梯移动本阶梯的点,直至最后无法移动的为输. 那么,利用NIM,只计算奇数级 ...

  4. POJ 1704 Georgia and Bob (Nim游戏变形)

    题目:http://poj.org/problem?id=1704 思路:Nim游戏策略,做如下转换,如果N是偶数,则两两配对,将两个数之间的格子数(距离)看做成这一堆石头的数量. 如果N是奇数,则将 ...

  5. POJ 1704 Georgia and Bob【博弈】

    题目链接: http://poj.org/problem?id=1704 题意: 给定棋子及其在格子上的坐标,两个人轮流选择一个棋子向左移动,每次至少移动一格,但是不可以碰到其他棋子.无路可走的时候视 ...

  6. 【POJ 1704】 Georgia and Bob

    [题目链接] http://poj.org/problem?id=1704 [算法] 阶梯博弈 [代码] #include <algorithm> #include <bitset& ...

  7. 【poj 1704】Georgia and Bob

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9776 Accepted: 3222 Description Georgia a ...

  8. poj 1704 阶梯博弈

    转自http://blog.sina.com.cn/s/blog_63e4cf2f0100tq4i.html 今天在POJ做了一道博弈题..进而了解到了阶梯博弈...下面阐述一下我对于阶梯博弈的理解. ...

  9. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8656   Accepted: 2751 D ...

随机推荐

  1. WPF Event 在 Command 中的应用初级篇,支持所有Event 展示松耦合设计的全部代码 - 解决TextBoxBase.TextChanged或者TextBox.TextChanged等类似事件绑定问题。

    做过WPF开发的人,都知道做MVVM架构,最麻烦的是Event的绑定,因为Event是不能被绑定的,同时现有的条件下,命令是无法替代Event.而在开发过程中无法避免Event事件,这样MVVM的架构 ...

  2. hdu 4308 Saving Princess claire_

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4308 Saving Princess claire_ Description Princess cla ...

  3. hdu 4198 Quick out of the Harbour

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4198 Quick out of the Harbour Description Captain Cle ...

  4. JVM学习总结五——性能监控及故障处理工具

    之前扯了四篇理论,这一篇终于可以动动手了.本篇我们将介绍JVM常用的一些工具,这些工具将是我们监控JVM状态.处理故障和调优分析的利器. 不过在开始之前,我还是要先车扯两句:工具终归只是帮助我们我们处 ...

  5. 项目进阶 之 集群环境搭建(三)多管理节点MySQL集群

    上次的博文项目进阶 之 集群环境搭建(二)MySQL集群中,我们搭建了一个基础的MySQL集群,这篇博客咱们继续讲解MySQL集群的相关内容,同时针对上一篇遗留的问题提出一个解决方案. 1.单管理节点 ...

  6. [shell基础]——paste命令

    测试文本内容如下: # cat name1.txt name1 alvin1 name2 alvin2 name3 alvin3 name4 alvin4 # cat name2.txt name1 ...

  7. c读取文本文档

    想数一下文本文档一共有多少行,写了个小程序 1.用fopen()以只读方式打开文件 2.用fgetc()获取文件流中的字符内容 3.如果字符内容为'\n'换行符,count++ 最后输出count的值 ...

  8. storm集成kafka

    kafkautil: import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.produce ...

  9. 学习JQuery的$.Ready()与OnLoad事件比较

    $(document).Ready()方法 VS OnLoad事件 VS $(window).load()方法接触JQuery一般最先学到的是何时启动事件.在曾经很长一段时间里,在页面载入后引发的事件 ...

  10. 我是一只it小小鸟阅读笔记

    “我们具有各自的独特性--我们兴趣各异,有不同的家庭背景,不同的知识储备,不同的思维方式……但在现实中,我们也会碰到类似的人生选择的关口,我们会犯类似的错误,有类似的迷惘,也会为类似的精彩鼓掌,而且很 ...