题目链接:https://uva.onlinejudge.org/external/100/10003.pdf

题意: L长的木棍,给n个切割点,切成n+1部分,每次切割的时候的费用等于切割时的长度。求最少费用。

这个题目和最优矩阵链乘一样,DP方向既不是顺序,也不是逆序,而是,较大部分状态取决于小部分状态的决策。

d(i,j) 切 i 和 j 的最少费用,那么方程就是 d(i,j) = min(d(i,k)+d(k,j)+a[j]-a[i]);(a[j]-a[i])就是切 i~j的费用。

顺便说一下最优矩阵链乘, n*m 的矩阵 和 m*p 的矩阵,相乘的次数是 n*m*p,矩阵链乘满足结合律,最优矩阵链乘的状态转移方程就是  f(i,j) = min(f(i,k)+f(k+1,j)+pi-1*pk*pj);

切木棍问题也可以用哈夫曼数来做,之前的一篇博客中有写。

#include <bits/stdc++.h>
using namespace std; #define maxn 55
#define INF 0x3f3f3f3f
int a[maxn],vis[maxn][maxn],d[maxn][maxn]; int L,n; int dp(int i,int j)
{
if(i>=j-) return ;
if(vis[i][j]) return d[i][j];
vis[i][j] = ; int & ans = d[i][j];
for(int k=; k<=j-; k++)
ans = min(ans,dp(i,k)+dp(k,j)+a[j]-a[i]);
return ans;
} int main()
{
while(scanf("%d",&L),L)
{
scanf("%d",&n);
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
a[] = ;
a[n+] = L;
memset(d,INF,sizeof(d));
memset(vis,,sizeof(vis)); int ans = dp(,n+);
printf("The minimum cutting is %d.\n",ans); } return ;
}

Uva 10003,切木棍的更多相关文章

  1. UVA 10003 切木棍(普通DP)

    切木棍 紫书P278 算是简单的dp了吧,当然,这是看完别人题解后的想法,呵呵,我仍然是想了半小时,没思路,啥时候能自个整个dp啊!!→_→ dp的时候,输入数组必须从1开始,一定要注意状态的设计,和 ...

  2. UVa 10003 切木棍(区间DP+最优矩阵链乘)

    https://vjudge.net/problem/UVA-10003 题意: 有一根长度为L的棍子,还有n个切割点的位置.你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每 ...

  3. uva 10003 Cutting Sticks 【区间dp】

    题目:uva 10003 Cutting Sticks 题意:给出一根长度 l 的木棍,要截断从某些点,然后截断的花费是当前木棍的长度,求总的最小花费? 分析:典型的区间dp,事实上和石子归并是一样的 ...

  4. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  5. UVA 10003 Cutting Sticks 切木棍 dp

    题意:把一根木棍按给定的n个点切下去,每次切的花费为切的那段木棍的长度,求最小花费. 这题出在dp入门这边,但是我看完题后有强烈的既是感,这不是以前做过的石子合并的题目变形吗? 题目其实就是把n+1根 ...

  6. UVA - 10003 Cutting Sticks(切木棍)(dp)

    题意:有一根长度为L(L<1000)的棍子,还有n(n < 50)个切割点的位置(按照从小到大排列).你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每次切割的费用 ...

  7. UVA 10003 cuting sticks 切木棍 (区间dp)

    区间dp,切割dp[i][j]的花费和切法无关(无后效性) dp[i][j]表示区间i,j的花费,于是只要枚举切割方法就行了,区间就划分成更小的区间了.O(n^3) 四边形不等式尚待学习 #inclu ...

  8. UVa 10003 - Cutting Sticks(区间DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa 10003 (可用四边形不等式优化) Cutting Sticks

    题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...

随机推荐

  1. nyist 240 小明的调查统计(二)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=240 小明的调查统计(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:1 ...

  2. [原创]Scala学习:数组的基本操作,数组进阶操作,多维数组

    1.Scala中提供了一种数据结构-数组,其中存储相同类型的元素的固定大小的连续集合.数组用于存储数据的集合,但它往往是更加有用认为数组作为相同类型的变量的集合 2 声明数组变量: 要使用的程序的数组 ...

  3. List, Set, Map是否继承自Collection接口?

    List, Set, Map是否继承自Collection接口? 答:List,Set是Map不是

  4. paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

    周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...

  5. 夺命雷公狗ThinkPHP项目之----企业网站2之数据库的快速设计

    我们在一个项目的时候,花费最多事件的估计还是数据库的时间了,我们的数据库暂时就这样设计好了: 暂时我们的数据库就这样设计好了用下先,建好后如下所示:

  6. thinphp讲解(三)——空操作、空控制器、跨控制器、命名空间

    一.“空操作”本质意思:一个对象(控制器)调用本身不存在的操作方法 一般网站处于安全考虑不给用户提示任何错误信息 在tp里面控制器controller.class.php里有个_call()方法 所以 ...

  7. 去掉vim的高亮的方法

    使用vim时经常因为误用了组合键而进行了搜索操作,搜索到的内容会被加上背景色,而且背景色一直保持着,就算下一次打开这个文件,还会显示搜索到内容的背景色 在vim中使用一个命令即可去掉: nohl

  8. Arm环境搭建-基于博创科技(CentOS7.0系统安装篇1)

    CentOs 7.0安装和基本命令篇        目的:学习基本的linux命令,熟悉linux操作系统,安装linux.(安装过5.5,6.3并不是安装一帆风顺的,多次安装,有个10次多吧,基本会 ...

  9. Sublime中增加格式化代码的快捷键

    [Preferences]->[Key Bindings]->[User]中,添加如下: { "keys": ["alt+shift+f"], &q ...

  10. Openstack的error僵尸实例的解决办法

    在我们对集群环境进行各种调整的情况下,很容易产生一些僵尸实例. 僵尸实例主要是没有该主机,但是在dashboard上,数据库中存在,解决办法网络上有的人给出了繁杂的修改数据库的方法,其实按照下面的命令 ...