Flume环境部署和配置详解及案例大全
一、什么是Flume? flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。 flume的特点: flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。 flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。 flume的可靠性 当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。 flume的可恢复性: 还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。 flume的一些核心概念: Agent使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。 Client生产数据,运行在一个独立的线程。 Source从Client收集数据,传递给Channel。 Sink从Channel收集数据,运行在一个独立线程。 Channel连接 sources 和 sinks ,这个有点像一个队列。 Events可以是日志记录、 avro 对象等。 Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:
值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:
二、flume的官方网站在哪里? http://flume.apache.org/
三、在哪里下载?
http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz
四、如何安装? 1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
root@m1: /home/hadoop/flume-1 .5.0-bin # cp conf/flume-env.sh.template conf/flume-env.sh root@m1: /home/hadoop/flume-1 .5.0-bin # vi conf/flume-env.sh # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced # during Flume startup. # Enviroment variables can be set here. JAVA_HOME= /usr/lib/jvm/java-7-oracle # Give Flume more memory and pre-allocate, enable remote monitoring via JMX #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote" # Note that the Flume conf directory is always included in the classpath. #FLUME_CLASSPATH="" |
3)验证是否安装成功
1
2
3
4
5
6
7
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng version Flume 1.5.0 Source code repository: https: //git-wip-us .apache.org /repos/asf/flume .git Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97 Compiled by hshreedharan on Wed May 7 14:49:18 PDT 2014 From source with checksum a01fe726e4380ba0c9f7a7d222db961f root@m1: /home/hadoop # |
出现上面的信息,表示安装成功了 五、flume的案例 1)案例1:Avro Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。 a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1: /home/hadoop #vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 4141 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console |
c)创建指定文件
1
|
root@m1: /home/hadoop # echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00 |
d)使用avro-client发送文件
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00 |
f)在m1的控制台,可以看到以下信息,注意最后一行:
1
2
3
4
5
6
7
8
9
10
|
root@m1: /home/hadoop/flume-1 .5.0-bin /conf # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console Info: Sourcing environment configuration script /home/hadoop/flume-1 .5.0-bin /conf/flume-env .sh Info: Including Hadoop libraries found via ( /home/hadoop/hadoop-2 .2.0 /bin/hadoop ) for HDFS access Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-api-1 .7.5.jar from classpath Info: Excluding /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar from classpath ... -08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND -08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED -08-10 10:43:25,112 (New I /O worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected. -08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64 hello world } |
2)案例2:Spool Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点: 1) 拷贝到spool目录下的文件不可以再打开编辑。 2) spool目录下不可包含相应的子目录 a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = spooldir a1.sources.r1.channels = c1 a1.sources.r1.spoolDir = /home/hadoop/flume-1 .5.0-bin /logs a1.sources.r1.fileHeader = true # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console |
c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录
1
|
root@m1: /home/hadoop # echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log |
d)在m1的控制台,可以看到以下相关信息:
1
2
3
4
5
6
7
8
9
10
11
|
/08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.COMPLETED /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:14 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31 spool test1 } /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. /08/10 11:37:17 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown. |
3)案例3:Exec EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容 a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = exec a1.sources.r1.channels = c1 a1.sources.r1. command = tail -F /home/hadoop/flume-1 .5.0-bin /log_exec_tail # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console |
c)生成足够多的内容在文件里
1
|
root@m1: /home/hadoop # for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_exec_tail;echo $i;sleep 0.1;done |
e)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } -08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74 exec tail test } -08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 exec tail1 } -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32 exec tail2 } -08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33 exec tail3 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34 exec tail4 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35 exec tail5 } -08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36 exec tail6 } .... .... .... -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36 exec tail96 } -08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37 exec tail97 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38 exec tail98 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39 exec tail99 } -08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30 exec tail100 } |
4)案例4:Syslogtcp Syslogtcp监听TCP的端口做为数据源 a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140 |
d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
/08/10 11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf /08/10 11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1 /08/10 11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [a1] /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Creating channels /08/10 11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type memory /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1 /08/10 11:41:45 INFO source.DefaultSourceFactory: Creating instance of source r1, type syslogtcp /08/10 11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type: logger /08/10 11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1] /08/10 11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} } /08/10 11:41:45 INFO node.Application: Starting Channel c1 /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 11:41:45 INFO node.Application: Starting Sink k1 /08/10 11:41:45 INFO node.Application: Starting Source r1 /08/10 11:41:45 INFO source.SyslogTcpSource: Syslog TCP Source starting... /08/10 11:42:15 WARN source.SyslogUtils: Event created from Invalid Syslog data. /08/10 11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org } |
5)案例5:JSONHandler a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = org.apache.flume. source .http.HTTPSource a1.sources.r1.port = 8888 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console |
c)生成JSON 格式的POST request
1
|
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888 |
d)在m1的控制台,可以看到以下信息: /
1
2
3
4
5
6
7
8
9
10
11
|
08/10 11:49:59 INFO node.Application: Starting Channel c1 /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 11:49:59 INFO node.Application: Starting Sink k1 /08/10 11:49:59 INFO node.Application: Starting Source r1 /08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog /08/10 11:49:59 INFO mortbay.log: jetty-6.1.26 /08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888 /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. /08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started /08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79 idoall.org_body } |
6)案例6:Hadoop sink 其中关于hadoop2.2.0部分的安装部署,请参考文章《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》 a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = hdfs a1.sinks.k1.channel = c1 a1.sinks.k1.hdfs.path = hdfs: //m1 :9000 /user/flume/syslogtcp a1.sinks.k1.hdfs.filePrefix = Syslog a1.sinks.k1.hdfs.round = true a1.sinks.k1.hdfs.roundValue = 10 a1.sinks.k1.hdfs.roundUnit = minute # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall flume -> hadoop testing one" | nc localhost 5140 |
d)在m1的控制台,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started /08/10 12:20:39 INFO node.Application: Starting Sink k1 /08/10 12:20:39 INFO node.Application: Starting Source r1 /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean. /08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started /08/10 12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting... /08/10 12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data. /08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false /08/10 12:21:49 INFO hdfs.BucketWriter: Creating hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Closing hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp /08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented /08/10 12:22:20 INFO hdfs.BucketWriter: Renaming hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504 /08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called. |
e)在m1上再打开一个窗口,去hadoop上检查文件是否生成
1
2
3
4
5
|
root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp Found 1 items -rw-r--r-- 3 root supergroup 155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog .1407644509504 root@m1: /home/hadoop # /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504 SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one |
7)案例7:File Roll Sink a)创建agent配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5555 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = file_roll a1.sinks.k1.sink.directory = /home/hadoop/flume-1 .5.0-bin /logs # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
b)启动flume agent a1
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console |
c)测试产生log
1
2
|
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5555 root@m1: /home/hadoop # echo "hello idoall.org syslog 2" | nc localhost 5555 |
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
1
2
3
4
5
6
7
8
9
10
|
root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs 总用量 272 drwxr-xr-x 3 root root 4096 Aug 10 12:50 ./ drwxr-xr-x 9 root root 4096 Aug 10 10:59 ../ -rw-r--r-- 1 root root 50 Aug 10 12:49 1407646164782-1 -rw-r--r-- 1 root root 0 Aug 10 12:49 1407646164782-2 -rw-r--r-- 1 root root 0 Aug 10 12:50 1407646164782-3 root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2 hello idoall.org syslog hello idoall.org syslog 2 |
8)案例8:Replicating Channel Selector Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。 这次我们需要用到m1,m2两台机器 a)在m1创建replicating_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建replicating_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)在m1上将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf<br> |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall.org syslog" | nc localhost 5140 |
f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
1
2
3
4
5
6
7
8
|
/08/10 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected. /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 /08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858 /08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org } |
9)案例9:Multiplexing Channel Selector a)在m1创建Multiplexing_Channel_Selector配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # Describe/configure the source a1.sources.r1. type = org.apache.flume. source .http.HTTPSource a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = multiplexing a1.sources.r1.selector.header = type #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。 a1.sources.r1.selector.mapping.baidu = c1 a1.sources.r1.selector.mapping.ali = c2 a1.sources.r1.selector.default = c1 # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Multiplexing_Channel_Selector_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生syslog
1
|
root@m1: /home/hadoop # curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140 |
f)在m1的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
14/08/10 14:32:21 INFO node.Application: Starting Sink k1 14/08/10 14:32:21 INFO node.Application: Starting Source r1 14/08/10 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:21 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945 14/08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 } 14/08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33 idoall_TEST3 } |
g)在m2的sink窗口,可以看到以下信息:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
14/08/10 14:32:27 INFO node.Application: Starting Sink k1 14/08/10 14:32:27 INFO node.Application: Starting Source r1 14/08/10 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 14:32:27 INFO source.AvroSource: Avro source r1 started. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599 14/08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32 idoall_TEST2 } |
可以看到,根据header中不同的条件分布到不同的channel上 10)案例10:Flume Sink Processors failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。 a)在m1创建Flume_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 #这个是配置failover的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 #处理的类型是failover a1.sinkgroups.g1.processor. type = failover #优先级,数字越大优先级越高,每个sink的优先级必须不相同 a1.sinkgroups.g1.processor.priority.k1 = 5 a1.sinkgroups.g1.processor.priority.k2 = 10 #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢 a1.sinkgroups.g1.processor.maxpenalty = 10000 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 c2 a1.sources.r1.selector. type = replicating # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c2 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2. type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 |
b)在m1创建Flume_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log
1
|
root@m1: /home/hadoop # echo "idoall.org test1 failover" | nc localhost 5140 |
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
1
2
3
4
5
|
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704 14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } |
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
1
|
root@m1: /home/hadoop # echo "idoall.org test2 failover" | nc localhost 5140 |
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
1
2
3
4
5
6
|
14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } |
i)我们再在m2的sink窗口中,启动sink:
1
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console |
j)输入两批测试数据:
1
|
root@m1: /home/hadoop # echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140 |
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
14/08/10 15:09:47 INFO node.Application: Starting Sink k1 14/08/10 15:09:47 INFO node.Application: Starting Source r1 14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }... 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean. 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started 14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741 14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
11)案例11:Load balancing Sink Processor load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。 a)在m1创建Load_balancing_Sink_Processors配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 #这个是配置Load balancing的关键,需要有一个sink group a1.sinkgroups = g1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinkgroups.g1.processor. type = load_balance a1.sinkgroups.g1.processor.backoff = true a1.sinkgroups.g1.processor.selector = round_robin # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = avro a1.sinks.k1.channel = c1 a1.sinks.k1. hostname = m1 a1.sinks.k1.port = 5555 a1.sinks.k2. type = avro a1.sinks.k2.channel = c1 a1.sinks.k2. hostname = m2 a1.sinks.k2.port = 5555 # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 |
b)在m1创建Load_balancing_Sink_Processors_avro配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = avro a1.sources.r1.channels = c1 a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port = 5555 # Describe the sink a1.sinks.k1. type = logger # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
c)将2个配置文件复制到m2上一份
1
2
|
root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf root@m1: /home/hadoop/flume-1 .5.0-bin # scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf |
d)打开4个窗口,在m1和m2上同时启动两个flume agent
1
2
|
root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console root@m1: /home/hadoop # /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console |
e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
1
2
3
4
|
root@m1: /home/hadoop # echo "idoall.org test1" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test2" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test3" | nc localhost 5140 root@m1: /home/hadoop # echo "idoall.org test4" | nc localhost 5140 |
f)在m1的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 } 14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 } |
g)在m2的sink窗口,可以看到以下信息:
1
2
|
14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 } 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 } |
说明轮询模式起到了作用。 12)案例12:Hbase sink a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动 b)然后将以下文件复制到flume中:
1
2
3
4
5
6
7
8
|
cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/protobuf-java-2 .5.0.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-client-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-common-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-protocol-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-server-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop2-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/hbase-hadoop-compat-0 .96.2-hadoop2.jar /home/hadoop/flume-1 .5.0-bin /lib @@@ cp /home/hadoop/hbase-0 .96.2-hadoop2 /lib/htrace-core-2 .04.jar /home/hadoop/flume-1 .5.0-bin /lib |
c)确保test_idoall_org表在hbase中已经存在,test_idoall_org表的格式以及字段请参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》中关于hbase部分的建表代码。 d)在m1创建hbase_simple配置文件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
root@m1: /home/hadoop # vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1. type = syslogtcp a1.sources.r1.port = 5140 a1.sources.r1.host = localhost a1.sources.r1.channels = c1 # Describe the sink a1.sinks.k1. type = logger a1.sinks.k1. type = hbase a1.sinks.k1.table = test_idoall_org a1.sinks.k1.columnFamily = name a1.sinks.k1.column = idoall a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer a1.sinks.k1.channel = memoryChannel # Use a channel which buffers events in memory a1.channels.c1. type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 |
e)启动flume agent
1
|
/home/hadoop/flume-1 .5.0-bin /bin/flume-ng agent -c . -f /home/hadoop/flume-1 .5.0-bin /conf/hbase_simple .conf -n a1 -Dflume.root.logger=INFO,console |
f)测试产生syslog
1
|
root@m1: /home/hadoop # echo "hello idoall.org from flume" | nc localhost 5140 |
g)这时登录到hbase中,可以发现新数据已经插入
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
root@m1: /home/hadoop # /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell 2014-08-10 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available HBase Shell; enter 'help<RETURN>' for list of supported commands. Type "exit<RETURN>" to leave the HBase Shell Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014 hbase(main):001:0> list TABLE SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar: file : /home/hadoop/hbase-0 .96.2-hadoop2 /lib/slf4j-log4j12-1 .6.4.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: Found binding in [jar: file : /home/hadoop/hadoop-2 .2.0 /share/hadoop/common/lib/slf4j-log4j12-1 .7.5.jar! /org/slf4j/impl/StaticLoggerBinder .class] SLF4J: See http: //www .slf4j.org /codes .html #multiple_bindings for an explanation. hbase2hive_idoall hive2hbase_idoall test_idoall_org 3 row(s) in 2.6880 seconds => [ "hbase2hive_idoall" , "hive2hbase_idoall" , "test_idoall_org" ] hbase(main):002:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1 row(s) in 0.0550 seconds hbase(main):003:0> scan "test_idoall_org" ROW COLUMN+CELL 10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue 1407658495588-XbQCOZrKK8-0 column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume 2 row(s) in 0.0200 seconds hbase(main):004:0> quit |
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧
Flume环境部署和配置详解及案例大全的更多相关文章
- web缓存服务器varnish-4.1.6的部署及配置详解
web缓存服务器varnish-4.1.6的部署及配置详解 1.安装varnish4.1.6安装依赖 yum install -y autoconf automake jemalloc-devel l ...
- Keepalived部署与配置详解
Keepalive详解 工作原理 Keepalived本质就是为ipvs服务的,它也不需要共享存储.IPVS其实就是一些规则,Keepalived主要的任务就是去调用ipvsadm命令,来生成规则,并 ...
- JDK的安装与Java环境变量的配置详解
JDK作为JAVA开发的环境,必须在电脑上安装JDK. 1.下载jdk http://rj.baidu.com/soft/detail/14459.html?ald下载jdk最新版jdk-8u11-w ...
- linux下nginx部署以及配置详解
1.下载源码包解压编译 启动多个,请看:在linux系统下安装两个nginx以及启动 查看nginx包路径:http://nginx.org/download/,两种下载方式: 1.在官网下载使用Xf ...
- puppet报告系统Dashboard部署及配置详解
Puppet Dasshboard是由支持Puppet开发的公司Puppetlabs创建的,是Ruby on Rails程序.可以作为一个ENC(外部节点分类器)以及一个报告工具,并且正在逐渐成为一个 ...
- Zabbix监控系统部署:配置详解
1. 全局配置 ListenPort ,监听端口 ,取值范围为1024-32767,默认端口10051 SourceIP,外发连接源地址 LogType,日志类型:单独日志文件,系统文件,控制台输出 ...
- nginx之location配置详解及案例
语法规则: location [=|~|~*|^~] /uri/ { … } = 开头表示精确匹配 ^~ 开头表示uri以某个常规字符串开头,理解为匹配 url路径即可.nginx不对url做编码, ...
- Flume NG 配置详解(转)
原文链接:[转]Flume NG 配置详解 (说明,名词对应解释 源-Source,接收器-Sink,通道-Channel) 配置 设置代理 Flume代理配置存储在本地配置文件.这是一个文本文件格式 ...
- OpenVPN CentOS7 安装部署配置详解
一 .概念相关 1.vpn 介绍 vpn 虚拟专用网络,是依靠isp和其他的nsp,在公共网络中建立专用的数据通信网络的技术.在vpn中任意两点之间的链接并没有传统的专网所需的端到端的物理链路,而是利 ...
随机推荐
- 全自动化的 Android 编译管线
[编者按]Nicolas Frankel 是 hybris 的高级顾问, 在Java / J2EE 领域拥有超过10年的管理经验,本文阐述了他在使用自动化工序去构建 Android 应用程序遇到的一些 ...
- MFC单文档程序结构
MFC单文档程序结构三方面: Doc MainFrame View
- iOS后台运行
http://www.cocoachina.com/bbs/read.php?tid=149564 文一 我从苹果文档中得知,一般的应用在进入后台的时候可以获取一定时间来运行相关任务,也就是说可以在后 ...
- github and SourceTree初步使用
1.建立连接(一次就行了) 输入你的github名字 2.创建仓库 3.下载仓库 这个时候打开SouceTree就可以看到之前创的仓库了 点击克隆,创建一个文件夹,讲路径设置好 这时候查看本地列表就会 ...
- POJ 2182
#include <iostream> #define MAXN 8005 using namespace std; int _m[MAXN]; int main() { //freope ...
- poj 3228(二分+最大流)
题目链接:http://poj.org/problem?id=3228 思路:增设一个超级源点和一个超级汇点,源点与每一个gold相连,容量为gold数量,汇点与仓库相连,容量为仓库的容量,然后就是二 ...
- 在.NET中使用Newtonsoft.Json转换,读取,写入的方法介绍
全局引用 using Newtonsoft.Json; using Newtonsoft.Json.Converters; //把Json字符串反序列化为对象 目标对象 = JavaScriptCon ...
- eq相等 ,ne、neq不相等 EL表达式
eq相等,ne.neq不相等, gt大于, lt小于 gte.ge大于等于 lte.le 小于等于 not非 mod求模 is [not] div by是否能被某数整除 is [n ...
- Spring笔记——Spring+JDBC组合开发
使用Spring+JDBC集成步骤如下: 1. 配置数据源 2. 配置事务.配置事务时,需要在xml配置文件中引入用于声明事务的tx命名空间,事务的配置方式有两种:注解方式和基于XML配置方式 ...
- Photoshop:不起眼的背景橡皮擦
背景橡皮擦工具是通过颜色的容差来进行工作的,“+”是定位点,当“+”光标位置在要擦除的位置上的时候,就能擦出比较好的效果. 取样连续:擦除的效果比较连续. 取样一次:不松开鼠标键,也不用担心“+”字中 ...