原题地址:http://poj.org/problem?id=1944

题目大意:有n个点排成一圈,可以连接任意两个相邻的点,给出 p 对点,要求这 p 对点必须直接或间接相连,求最少的连接边数

数据范围:n <= 1000, p <= 10000

算法分析:

一开始当最小生成树做的,才发现自己 SB 了……

先考虑不是环形而是线形的结构,直接贪心连接每两个点之间的所有点就好了。这样我们可以枚举环形的断点,然后逐次贪心,求最小解即可

很多同学在贪心的时候应用了线段树是复杂度高达O(np log n),其实丝毫没有必要,我们只需要每次断点时生成一个数组,在每对点的左边点处加1,再在右边点处减1,然后求一下部分和,部分和中正数的个数即为所求(详见代码)

参考代码:

 //date 20140205
#include <cstdio>
#include <cstring> const int maxn = ;
const int maxp = ;
const int INF = 0x7F7F7F7F; inline void swap(int &a, int &b){int x = a; a = b; b = x;}
inline int min(int a, int b){return a < b ? a : b;} int n, p;
int pa[maxp][];
int s[maxn << ]; int main()
{
scanf("%d%d", &n, &p);
for(int i = ; i <= p; ++i)
{
scanf("%d%d", &pa[i][], &pa[i][]);
if(pa[i][] > pa[i][])swap(pa[i][], pa[i][]);
} int ans = INF;
for(int i = ; i <= n; ++i)
{
memset(s, , sizeof s);
for(int j = ; j <= p; ++j)
{
int x = pa[j][], y = pa[j][];
if(x <= i)x += n;
if(y <= i)y += n;
if(x > y)swap(x, y);
++s[x]; --s[y];
}
int now = , res = ;
for(int j = ; j <= n; ++j)
{
now += s[i + j];
if(now > )++res;
}
ans = min(ans, res);
}
printf("%d\n", ans);
return ;
}

POJ 1944 - Fiber Communications的更多相关文章

  1. POJ 1944 Fiber Communications (枚举 + 并查集 OR 线段树)

    题意 在一个有N(1 ≤ N ≤ 1,000)个点环形图上有P(1 ≤ P ≤ 10,000)对点需要连接.连接只能连接环上相邻的点.问至少需要连接几条边. 思路 突破点在于最后的结果一定不是一个环! ...

  2. POJ 1944:Fiber Communications

    Fiber Communications Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4236   Accepted: 1 ...

  3. [USACO2002][poj1944]Fiber Communications(枚举)

    Fiber Communications Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3804   Accepted: 1 ...

  4. POJ1944 Fiber Communications (USACO 2002 February)

    Fiber Communications 总时间限制:  1000ms 内存限制:  65536kB 描述 Farmer John wants to connect his N (1 <= N ...

  5. TOJ1550: Fiber Communications

    1550: Fiber Communications  Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByteTotal ...

  6. POJ 2579 Fiber Network(状态压缩+Floyd)

    Fiber Network Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3328   Accepted: 1532 Des ...

  7. usaco 2002 月赛 Fiber Communications 题解

    Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...

  8. POJ 2570 Fiber Network(最短路 二进制处理)

    题目翻译 一些公司决定搭建一个更快的网络.称为"光纤网". 他们已经在全世界建立了很多网站.这 些网站的作用类似于路由器.不幸的是,这些公司在关于网站之间的接线问题上存在争论,这样 ...

  9. ZOJ 1967 POJ 2570 Fiber Network

    枚举起点和公司,每次用DFS跑一遍图,预处理出所有的答案.询问的时候很快就能得到答案. #include<cstdio> #include<cmath> #include< ...

随机推荐

  1. JsUnit && JUnit之讲解

    首先我们定义我们的函数 这里以最简单的加减乘除四个方法来进行测试 建立我们的js文件myjs.js function add(num1,num2){ return num1 + num2; } fun ...

  2. themeforest 模板

    如果给个人或一个客户使用就购买Regular License 多个项目或多人就徐需要购买Extended License,然后看你买html模版还是wordpress模版了.html需要你自己会编程将 ...

  3. NGUI 自定义 Drag Item Script

    最近要实现一个NGUI效果. 查看了一下,NGUI有个自带 UIDragDropItem.cs 的组件进过修改后即可以实现. 下面贴上UI布局,代码: mDragDropItem.cs using U ...

  4. Win8必知快捷键汇总

    * Win+C:调出应用Charm菜单(开始界面.传统桌面) * Win+D:所有程序最小化,再次按下恢复(开始界面.传统桌面) * Win+E:打开我的电脑(开始界面.传统桌面) * Win+F:调 ...

  5. Razor语法学习

    原文:http://www.cnblogs.com/youring2/archive/2011/07/24/2115254.html 1.Razor的文件类型 Razor支持两种文件类型,分别是.cs ...

  6. POJ 2023 Choose Your Own Adventure(树形,dfs,简单题)

    题意: 输入一个整数n,表示有n组测试数据, 每组第一行输入一个整数x表示该组测试一共有x页,接下来输入x行,每行表示一页, 每页或者以C开头(第一页都是以C开头),或者以E开头,中间用引号括起一段文 ...

  7. PHP一些函数

     函数不定参数: func_num_args // 获得参数个数 func_get_args // 获得参数数组 call_user_func('function_name', $parameter) ...

  8. HDU 2084 数塔(动态规划)

    数塔 http://acm.hdu.edu.cn/showproblem.php?pid=2084 Problem Description 在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描 ...

  9. Xamarin for Visual Studio 破解日志

    一.相关声明 本文涉及的 Xamarin 系列软件的版权为 Xamarin Inc. 所有 以本文涉及的思路和方法破解的软件,禁止用于商业用途 如无必要,学习和研究时最好以正版为准 团队或土豪等若觉得 ...

  10. JS面向(基于)对象编程--三大特征

    抽象 在讲解面向对象编程的三大特征前,我们先了解什么叫抽象,在定义一个类时候,实际上就是把一类事物的共有的属性和行为提取出来,形成一个物理模型(模板).这种研究问题的方法称为抽象. 封装 什么是封装? ...