卷积神经网络(CNN)学习笔记1:基础入门

Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views

概述

卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的前期预处理过程(提取人工特征等),可以直接输入原始图像。

图像处理中,往往会将图像看成是一个或多个的二维向量,如之前博文中提到的MNIST手写体图片就可以看做是一个28 × 28的二维向量(黑白图片,只有一个颜色通道;如果是RGB表示的彩色图片则有三个颜色通道,可表示为三张二维向量)。传统的神经网络都是采用全连接的方式,即输入层到隐藏层的神经元都是全部连接的,这样做将导致参数量巨大,使得网络训练耗时甚至难以训练,而CNN则通过局部连接权值共享等方法避免这一困难,有趣的是,这些方法都是受到现代生物神经网络相关研究的启发(感兴趣可阅读以下部分)。

下面重点介绍下CNN中的局部连接(Sparse Connectivity)权值共享(Shared Weights)方法,理解它们很重要。

局部连接与权值共享

下图是一个很经典的图示,左边是全连接,右边是局部连接。

对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练;而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级。

尽管减少了几个数量级,但参数数量依然较多。能不能再进一步减少呢?能!方法就是权值共享。具体做法是,在局部连接中隐藏层的每一个神经元连接的是一个10 × 10的局部图像,因此有10 × 10个权值参数,将这10 × 10个权值参数共享给剩下的神经元,也就是说隐藏层中10^6个神经元的权值参数相同,那么此时不管隐藏层神经元的数目是多少,需要训练的参数就是这 10 × 10个权值参数(也就是卷积核(也称滤波器)的大小),如下图。

这大概就是CNN的一个神奇之处,尽管只有这么少的参数,依旧有出色的性能。但是,这样仅提取了图像的一种特征,如果要多提取出一些特征,可以增加多个卷积核,不同的卷积核能够得到图像的不同映射下的特征,称之为Feature Map。如果有100个卷积核,最终的权值参数也仅为100 × 100 = 10^4个而已。另外,偏置参数也是共享的,同一种滤波器共享一个。

卷积神经网络的核心思想是:局部感受野(local field),权值共享以及时间或空间亚采样这三种思想结合起来,获得了某种程度的位移、尺度、形变不变性(?不够理解透彻?)。

网络结构

下图是一个经典的CNN结构,称为LeNet-5网络

可以看出,CNN中主要有两种类型的网络层,分别是卷积层池化/采样层(Pooling)。卷积层的作用是提取图像的各种特征;池化层的作用是对原始特征信号进行抽象,从而大幅度减少训练参数,另外还可以减轻模型过拟合的程度。

卷积层

卷积层是卷积核在上一级输入层上通过逐一滑动窗口计算而得,卷积核中的每一个参数都相当于传统神经网络中的权值参数,与对应的局部像素相连接,将卷积核的各个参数与对应的局部像素值相乘之和,(通常还要再加上一个偏置参数),得到卷积层上的结果。如下图所示。

下面的动图能够更好地解释卷积过程:

池化/采样层

通过卷积层获得了图像的特征之后,理论上我们可以直接使用这些特征训练分类器(如softmax),但是这样做将面临巨大的计算量的挑战,而且容易产生过拟合的现象。为了进一步降低网络训练参数及模型的过拟合程度,我们对卷积层进行池化/采样(Pooling)处理。池化/采样的方式通常有以下两种:

  • Max-Pooling: 选择Pooling窗口中的最大值作为采样值;
  • Mean-Pooling: 将Pooling窗口中的所有值相加取平均,以平均值作为采样值;

如下图所示。

LeNet-5网络详解

以上较详细地介绍了CNN的网络结构和基本原理,下面介绍一个经典的CNN模型:LeNet-5网络

LeNet-5网络在MNIST数据集上的结果


本文结束,感谢欣赏。

欢迎转载,请注明本文的链接地址:

http://www.jeyzhang.com/cnn-learning-notes-1.html

参考资料

Deep Learning(深度学习)学习笔记整理系列之(七)

部分图片出自北京大学信息科学技术学院李戈教授的《深度学习技术与应用》课件

卷积神经网络(CNN)学习笔记1:基础入门的更多相关文章

  1. 卷积神经网络CNN学习笔记

    CNN的基本结构包括两层: 特征提取层:每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来: 特征映射层:网络的每个计算层由多 ...

  2. 卷积神经网络 CNN 学习笔记

    激活函数Relu 最近几年卷积神经网络中,激活函数往往不选择sigmoid或tanh函数,而是选择relu函数.Relu函数的定义 $$f(x)= max(0,x)$$ Relu函数图像如下图所示: ...

  3. 《马哥出品高薪linux运维教程》wingkeung学习笔记-linux基础入门课程

    计算机原理概念: 1.CPU和内存中的存储单元通信线路称为总线(BUS),总线是被指令和数据复用的,所以也称为前端总线. 2.计算机中计算频率的时间标准即晶体振荡器原理,精确计算时间长度,根据相同的时 ...

  4. Vue学习笔记-Vue基础入门

    此篇文章是本人在学习Vue是做的部分笔记的一个整理,内容不是很全面,希望能对阅读文章的同学有点帮助. 什么是Vue? Vue.js (读音 /vjuː/,类似于 view) 是一套构建用户界面的渐进式 ...

  5. 006 SpringCloud 学习笔记2-----SpringCloud基础入门

    1.SpringCloud概述 微服务是一种架构方式,最终肯定需要技术架构去实施. 微服务的实现方式很多,但是最火的莫过于Spring Cloud了.SpringCloud优点: - 后台硬:作为Sp ...

  6. java 从零开始,学习笔记之基础入门<Oracle_基础>(三十三)

    Oracle 数据库基本知识   [训练1] 显示DEPT表的指定字段的查询.               输入并执行查询:               SELECTdeptno,dname FROM ...

  7. java 从零开始,学习笔记之基础入门<集合>(十六)

    集合 集合:将多个元素放入到一个集合对象中去,对应的集合对象就可以用来存储多元素. Collection接口的子接口:Set接口和List接口. Map不是Collection接口的子接口. Coll ...

  8. CNN学习笔记:卷积神经网络

    CNN学习笔记:卷积神经网络 卷积神经网络 基本结构 卷积神经网络是一种层次模型,其输入是原始数据,如RGB图像.音频等.卷积神经网络通过卷积(convolution)操作.汇合(pooling)操作 ...

  9. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

随机推荐

  1. linux 内核参数优化----最大线程数限制及当前线程数查询

    1.总结系统限制有: /proc/sys/kernel/pid_max #查系统支持的最大线程数,一般会很大,相当于理论值 /proc/sys/kernel/thread-max max_user_p ...

  2. HDU5387-模拟水题

    模拟钟表的时分秒针的走动,给出时间求出夹角.注意每组输出要有一个空格 以后要想好再写代码,这样一个水题做了50分钟,太弱了... #include<cstdio> #include< ...

  3. day30 item系列

    item 会将数据操作类似于字典的操作具体用到的方法 __getitem__(self, item): __setitem__(self, key, value): __delitem__(self, ...

  4. git pull报“unable to update local ref”解决方案

    使用git pull拉取代码的时候,无法拉取最新代码,报"unable to update local ref"错误. 除了重新clone一份代码外,还可以使用如下解决方案: 1. ...

  5. 自学Zabbix3.10.2.1 linux如何配置使用sendEmail发送邮件

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 自学Zabbix3.10.2.1 linux如何配置使用sendEmail发送邮件 sendEma ...

  6. UOJ #164. 【清华集训2015】V | 线段树

    题目链接 UOJ #164 题解 首先,这道题有三种询问:区间加.区间减(减完对\(0\)取\(\max\)).区间修改. 可以用一种标记来表示--标记\((a, b)\)表示把原来的值加上\(a\) ...

  7. 前端学习 -- Html&Css -- 层级和透明度

    层级 如果定位元素的层级是一样,则下边的元素会盖住上边的. 通过z-index属性可以用来设置元素的层级,可以为z-index指定一个正整数作为值,该值将会作为当前元素的层级,层级越高,越优先显示. ...

  8. exec函数族的使用

    作者:王姗姗,华清远见嵌入式学院讲师. exec用被执行的程序完全替换调用它的程序的影像.fork创建一个新的进程就产生了一个新的PID,exec启动一个新程序,替换原有的进程,因此这个新的被exec ...

  9. A1060. Are They Equal

    If a machine can save only 3 significant digits, the float numbers 12300 and 12358.9 are considered ...

  10. 关于:HTTP Header -> Content-Type: text/plain Cache-Control: no-cache IE浏览器弹出错误下载对话

    下午遇到一个很奇怪的现象,一个网址: http://192.168.1.3/login?action=a&fr=b.com 注意网址后面的参数形式,action参数在前,最后一个参数值的尾部含 ...