2018 AICCSA Programming Contest

Tree Game

Rectangles

思路:如果存在大于0的交面积的话, 那么肯定能找到一条水平的直线 和 一条垂直的直线,

使得水平直线的左右两边点的个数相等且为n, 垂直直线的左右两边点的个数相等且为n

也就是说不能有点在这两条线上, 否则交面积为0

然后左上角的点和右下角的点配对, 左下角的点和右上角的点配对

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 2e5 + , M = 1e5 + ;
const int MOD = 1e9 + ;
pii a[N];
int fac[M];
bool cmp(pii a, pii b) {
return a.se < b.se;
}
void init() {
fac[] = ;
for (int i = ; i < M; i++) fac[i] = (1LL * fac[i-] * i) % MOD;
}
int main() {
int T, n;
init();
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for (int i = ; i <= *n; i++) scanf("%d %d", &a[i].fi, &a[i].se);
bool f = false;
sort(a+, a++*n);
double x = , y = ;
if(a[n].fi != a[n+].fi) x = (a[n].fi + a[n+].fi) / 2.0;
else f = true; sort(a+, a++*n, cmp);
if(a[n].se != a[n+].se) y = (a[n].se + a[n+].se) / 2.0;
else f = true;
int cnt = ;
for (int i = ; i <= *n; i++) if(a[i].fi > x && a[i].se > y) cnt++;
if(f) printf("0\n");
else printf("%lld\n", (1LL * fac[cnt] * fac[n-cnt]) % MOD);
}
return ;
}

Function

思路:打表找规律, 发现ai的系数为C(n+1, i) - 1

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 1e6 + ;
const int MOD = 1e9 + ;
int a[N];
LL fac[N], inv[N];
LL q_pow(LL n, LL k) {
LL ans = ;
while(k) {
if(k&) ans = (ans * n) % MOD;
n = (n * n) % MOD;
k >>= ;
}
return ans;
}
void init() {
fac[] = ;
for (int i = ; i < N; i++) fac[i] = fac[i-] * i % MOD;
inv[N-] = q_pow(fac[N-], MOD-);
for (int i = N-; i >= ; i--) inv[i] = inv[i+] * (i+) % MOD;
}
LL C(int n, int m) {
return fac[n] * inv[m] % MOD * inv[n-m] % MOD;
}
int main() {
int T;
init();
scanf("%d", &T);
while(T--) {
int n;
scanf("%d", &n);
for (int i = ; i <= n; i++) scanf("%d", &a[i]);
LL ans = ;
for (int i = ; i <= n; i++) {
(ans = ans + (C(n+, i) - ) * a[i] % MOD) %= MOD;
}
printf("%lld\n", (ans + MOD) % MOD);
}
return ;
}

Two Sequences

思路:将a数组放到集合里, 方便查找删除

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 1e5 + ;
int a[N], b[N];
multiset<int> s;
vector<int> vc;
int main() {
int T, n, k;
scanf("%d", &T);
while(T--) {
scanf("%d %d", &n, &k);
s.clear();
vc.clear();
for (int i = ; i <= n; i++) scanf("%d", &a[i]), s.insert(a[i]);
for (int i = ; i <= n; i++) scanf("%d", &b[i]);
for (int i = ; i <= n; i++) {
multiset<int>:: iterator it = s.lower_bound(b[i]);
if(it == s.end() || *it != b[i]) {
vc.pb(b[i]);
}
else s.erase(it);
}
if((int)vc.size() == ) puts("YES");
else if((int)vc.size() == ) {
if(*s.begin() - k <= vc[] && vc[] <= *s.begin() + k) puts("YES");
else puts("NO");
}
else puts("NO");
}
return ;
}

Connecting Components

Mirror

TeddyBearsDay

思路:对于每个点, 它连向父亲的边只有当它的子树中不能自销的多余部分才会用到

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 1e4 + ;
vector<pii> g[N];
int send[N], rev[N];
LL ans = ; pii dfs(int u, int o, int w) {
pii tmp = {send[u], rev[u]};
for (pii p : g[u]) {
if(p.fi != o) {
pii pp = dfs(p.fi, u, p.se);
tmp.fi += pp.fi;
tmp.se += pp.se;
}
}
ans += 1LL * abs(tmp.fi - tmp.se) * w;
return tmp;
}
int main() {
int T, n, u, v, w, q;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for (int i = ; i <= n; i++) g[i].clear(), send[i] = rev[i] = ;
for (int i = ; i < n; i++) {
scanf("%d %d %d", &u, &v, &w);
g[u].pb({v, w});
g[v].pb({u, w});
}
scanf("%d", &q);
while(q--) {
scanf("%d %d", &u, &v);
send[u]++;
rev[v]++;
}
ans = ;
dfs(, , );
printf("%lld\n", ans);
}
return ;
}

Win Strategy

思路:背包dp变形

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 1e3 + ;
pii a[N];
int dp[N];
int main() {
int T, n, L;
scanf("%d", &T);
while(T--) {
scanf("%d %d", &n, &L);
for (int i = ; i <= n; i++) scanf("%d %d", &a[i].fi, &a[i].se);
for (int i = ; i <= L; i++) dp[i] = ;
for (int i = ; i <= n; i++) {
for (int j = L; j >= a[i].se; j--) {
if(j-a[i].se + >= a[i].fi) dp[j] = max(dp[j], dp[j-a[i].se] + );
}
}
printf("%d\n", dp[L]);
}
return ;
}

Tours

思路:二分答案, check时对于每辆bus, 如果它上一天是空闲的, 才能填补今天的空缺, 然后今天原本的车就是昨天需要的车, 不够的拿昨天剩余的补

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define fopen freopen("in.txt", "r", stdin);freopen("out.txt", "w", stout);
//head const int N = 1e5 + ;
vector<int> a[N];
int T, m, n, r, t, tmp[N];
bool check(int x) {
int pre = ;
for (int i = ; i <= n; i++) {
if(i == ) {
int tot = ;
for (int j = ; j <= m; j++) {
tmp[j] = (a[j][i] + r - ) / r;
tot += tmp[j];
}
if(tot > x) return false;
pre = x - tot;
}
else {
int tot = ;
for (int j = ; j <= m; j++) {
if(tmp[j] >= (a[j][i] + r - ) / r) tmp[j] = (a[j][i] + r - ) / r;
else {
if(pre >= (a[j][i] + r - ) / r - tmp[j]) pre -= (a[j][i] + r - ) / r - tmp[j];
else return false;
tmp[j] = (a[j][i] + r - ) / r;
}
tot += (a[j][i] + r - ) / r;
}
if(tot > x) return false;
pre = x - tot;
}
}
return true;
}
int main() {
scanf("%d", &T);
while(T--) {
scanf("%d %d %d", &m, &n, &r);
for (int i = ; i <= m; i++) {
a[i].clear();
a[i].pb();
for (int j = ; j <= n; j++) {
scanf("%d", &t);
a[i].pb(t);
}
}
int l = , r = 5e5, mid = l+r >> ;
while(l < r) {
if(check(mid)) r = mid;
else l = mid+;
mid = l+r >> ;
}
printf("%d\n", mid);
}
return ;
}

Restricted Vertex Cover

思路:2-sat

建边:

对于一条mark的边,

如果其中一点在点覆盖中, 那么另外一点肯定不在点覆盖中

如果其中一点不在点覆盖中, 那么另外一点肯定在点覆盖中

对于一条unmark的边,

如果其中一点在点覆盖中, 那么另外一点不确定

如果其中一点不在点覆盖中, 那么另外一点肯定在点覆盖中

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=;
int ins[N],dfn[N],low[N],cnt,sta[N];
int top,v,u;
int Next[N],head[N],to[N];
int tot;
int scc[N];
int scccnt;
void make_list(int u,int v){
Next[++tot]=head[u],head[u]=tot,to[tot]=v;
}
void tarjan(int x){
ins[x]=dfn[x]=low[x]=++cnt,sta[top++]=x;
for(int p=head[x],v=to[p];p;p=Next[p],v=to[p])
if(!dfn[v])tarjan(v),low[x]=min(low[x],low[v]);
else if(ins[v])low[x]=min(low[x],dfn[v]);
if(low[x]==dfn[x]){
scc[x]=++scccnt,ins[x]=;
while((u=sta[--top])!=x)ins[u]=,scc[u]=scccnt;
}
}
int main(){
int T;
int n,m;
int u,v,w;
scanf("%d",&T);
for(int t=;t<=T;t++){
scanf("%d%d",&n,&m);
memset(head,,sizeof(int)*(n*+));
memset(dfn,,sizeof(int)*(n*+));
top=;
tot=;
memset(scc,,sizeof(int)*(n*+));
memset(low,,sizeof(int)*(n*+));
scccnt=;
memset(ins,,sizeof(int)*(n*+));
cnt=;
memset(sta,,sizeof(int)*(n*+));
for(int i=;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
if(w){
make_list(u,v+n);
make_list(v,u+n);
make_list(u+n,v);
make_list(v+n,u);
}
else{
make_list(u+n,v);
make_list(v+n,u);
}
}
for(int i=;i<=*n;i++){
if(!dfn[i])tarjan(i);
}
bool ok=;
for(int i=;i<=n;i++){
ok&=(scc[i]!=scc[i+n]);
}
if(ok)puts("YES");
else puts("NO");
}
return ;
}

2018 AICCSA Programming Contest的更多相关文章

  1. 2018 JUST Programming Contest 1.0 题解

    题目链接  gym101778 Problem A 转化成绝对值之后算一下概率.这个题有点像 2018 ZOJ Monthly March Problem D ? 不过那个题要难一些~ #includ ...

  2. AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...

  3. 2018 ACM-ICPC, Syrian Collegiate Programming Contest

    2018 ACM-ICPC, Syrian Collegiate Programming Contest A Hello SCPC 2018! 水题 B Binary Hamming 水题 C Por ...

  4. 2018 German Collegiate Programming Contest (GCPC 18)

    2018 German Collegiate Programming Contest (GCPC 18) Attack on Alpha-Zet 建树,求lca 代码: #include <al ...

  5. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  6. (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest(爽题)

    layout: post title: (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest(爽题) author: " ...

  7. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  8. (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest

    layout: post title: (寒假开黑gym)2018 ACM-ICPC, Syrian Collegiate Programming Contest author: "luow ...

  9. (寒假GYM开黑)2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)

    layout: post title: 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) author: &qu ...

随机推荐

  1. mysql 5.6二进制安装

    1.  进入用户家目录创建tools文件夹 # cd ~ #mkdir tools 2.下载MySQL5.6二进制包(搜狐镜像里有各版本下载http://mirrors.sohu.com/mysql/ ...

  2. poj 1159 Palindrome - 动态规划

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well ...

  3. Python常用库之functools

    functools 是python2.5被引人的,一些工具函数放在此包里. python2.7中 python3.6中 import functools print(dir(functools)) [ ...

  4. 重要, 要播放音乐视频等多媒体: 安装fedora23中的多媒体编码器

    区分: 大多数用户和高级用户? 删除 dnf remove software-name 启动软件管理器: gnome-software. 要删除系统 "自带的" 软件, 如empt ...

  5. MySql 语句收集

    目录 =与:=区别 序列号: 分组: 子查询分组: 同数据库表数据迁移 存储过程 参考: =与:=区别 = 只有在set和update时才是和:=一样,赋值的作用,其它都是等于的作用.鉴于此,用变量实 ...

  6. HDU 4638 Group(莫队)题解

    题意:n个数,每个数有一个值,每次询问一个区间,问你这个区间能分成连续的几段(比如7 1 2 8 就是两端 1 2 和 7 8) 思路:莫队.因为L.R移动顺序wa了20发...问了一下别人,都是先扩 ...

  7. OAuth2.0原理与实现

    弄懂了原理流程,才可以搭建出来.更重要的是,可以根据原理流程自定义搭建,甚至可以完全自己实现一套,最后运行效果和原理和这个对得上就成功了,不要总期待标准答案! 首先参考两篇博客: 阮一峰的博客以及张开 ...

  8. P3338 [ZJOI2014]力

    思路 颓柿子的题目 要求求这样的一个式子 \[ F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2} ...

  9. P2057 [SHOI2007]善意的投票

    思路 简单的最小割模型 最小割的模型就是选出一些边,把点集划分成S和T两个部分,使得代价最小 到这题上就是板子了 代码 #include <cstdio> #include <alg ...

  10. P4450 双亲数

    思路 同zap-queries 莫比乌斯反演的板子 数据范围小到不用整除分块... 代码 #include <cstdio> #include <algorithm> #inc ...