参考:

L1 Norm Regularization and Sparsity Explained for Dummies 专为小白解释的文章,文笔十分之幽默

  1. why does a small L1 norm give a sparse solution?
  2. why does a sparse solution avoid over-fitting?
  3. what does regularization do really?

减少feature的数量可以防止over fitting,尤其是在特征比样本数多得多的情况下。

L1就二维而言是一个四边形(L1 norm is |x| + |y|),它是只有形状没有大小的,所以可以不断伸缩。我们得到的参数是一个直线(两个参数时),也就是我们有无数种取参数的方法,但是我们想满足L1的约束条件,所以 要选择相交点的参数组。

Then why not letting p < 1? That’s because when p < 1, there are calculation difficulties. 所以我们通常只在L1和L2之间选,这是因为计算问题,并不是不能。

l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

  where 

就是一个简单的公式而已,所有的范数瞬间都可以理解了。(注意范数的写法,写在下面,带双竖杠)

Before answering your question I need to edit that Manhattan norm is actually L1 norm and Euclidean norm is L2.

As for real-life meaning, Euclidean norm measures the beeline/bird-line distance, i.e. just the length of the line segment connecting two points. However, when we move around, especially in a crowded city area like Manhattan, we obviously cannot follow a straight line (unless you can fly like a bird). Instead, we need to follow a grid-like route, e.g. 3 blocks to teh west, then 4 blocks to the south. The length of this grid route is the Manhattan norm.

之前的印象是L1就是Lasso,是一个四边形,相当于绝对值。

L2就是Ridge,相当于是一个圆。

如何理解机器学习/统计学中的各种范数norm | L1 | L2 | 使用哪种regularization方法?的更多相关文章

  1. 机器学习中的规则化范数(L0, L1, L2, 核范数)

    目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...

  2. 深入理解javascript选择器API系列第三篇——h5新增的3种selector方法

    × 目录 [1]方法 [2]非实时 [3]缺陷 前面的话 尽管DOM作为API已经非常完善了,但是为了实现更多的功能,DOM仍然进行了扩展,其中一个重要的扩展就是对选择器API的扩展.人们对jQuer ...

  3. 深入理解javascript选择器API系列第三篇——HTML5新增的3种selector方法

    前面的话 尽管DOM作为API已经非常完善了,但是为了实现更多的功能,DOM仍然进行了扩展,其中一个重要的扩展就是对选择器API的扩展.人们对jQuery的称赞,很多是由于jQuery方便的元素选择器 ...

  4. 机器学习中正则惩罚项L0/L1/L2范数详解

    https://blog.csdn.net/zouxy09/article/details/24971995 原文转自csdn博客,写的非常好. L0: 非零的个数 L1: 参数绝对值的和 L2:参数 ...

  5. css浮动中避免包含元素高度为0的4种解决方法

    问题:当子元素中使用了float时,如果其父元素不指定高度,其高度将为0 解决:清除(闭合)浮动元素,使其父div高度自适应 方法一:额外标签+clear:both     (W3C推荐方法,兼容性较 ...

  6. Spark机器学习 Day2 快速理解机器学习

    Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这 ...

  7. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  8. Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming

    Spark Streaming揭秘 Day29 深入理解Spark2.x中的Structured Streaming 在Spark2.x中,Spark Streaming获得了比较全面的升级,称为St ...

  9. 机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)

    摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型 ...

随机推荐

  1. 【4OpenCV】OpenCV和RTSP的综合研究

    一.RTSP是什么?用来干什么? RTSP(Real Time Streaming Protocol),RFC2326,实时流传输协议,是TCP/IP协议体系中的一个应用层协议,由哥伦比亚大学.网景和 ...

  2. 使用kubeadm 安装 kubernetes 1.12.0

    目录 简介: 架构说明: 系统配置: 1.1 关闭防火墙 1.2 禁用SELinux 1.3 关闭系统Swap 1.4 安装docker 使用kubeadm部署Kubernetes: 2.1 安装ku ...

  3. Bytom矿池接入协议指南

    矿机配置 https://gist.github.com/HAOYUatHZ/a47400bde4a138825faef415387b532c 固件升级 https://service.bitmain ...

  4. Java二进制指令

    转自: http://www.blogjava.net/DLevin/archive/2011/09/13/358497.html 指令从0x00-0xc9 没有0xba 常量入栈指令 指令码 操作码 ...

  5. 【SQL】【Join基础】了解sql中的join用法,看这一篇就够了

    转自: https://www.cnblogs.com/reaptomorrow-flydream/p/8145610.html SQL JOIN 子句用于把来自两个或多个表的行结合起来,基于这些表之 ...

  6. 洛谷P1679神奇的四次方数--DP

    原题请戳>>https://www.luogu.org/problem/show?pid=1679<< 题目描述 在你的帮助下,v神终于帮同学找到了最合适的大学,接下来就要通知 ...

  7. Selenium Webdriver 自动化测试开发常见问题(C#版)

    转一篇文章,有修改,出处http://www.7dtest.com/site/blog-2880-203.html 1:Selenium中对浏览器的操作 首先生成一个Web对象 IWebDriver ...

  8. go 一波走起

    $ go run helloworld.go 运行 $ go build helloworld.go 编译 该命令生成一个名为helloworld的可执行的二进制文件,可以随时运行它 $ ./hell ...

  9. 定义统一的返回格式(controller)

    一:单独创建一个类来表示返回结果 package com.jk51.commons.dto; /** * Created by Administrator on 2017/6/13. */ publi ...

  10. 33 Python 详解命令解析 - argparse--更加详细--转载

    https://blog.csdn.net/lis_12/article/details/54618868 Python 详解命令行解析 - argparse Python 详解命令行解析 - arg ...