POJ1417 True Liars
题意
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 6392 | Accepted: 2080 |
Description
In order to prevent the worst-case scenario, Akira should distinguish the devilish from the divine. But how? They looked exactly alike and he could not distinguish one from the other solely by their appearances. He still had his last hope, however. The members of the divine tribe are truth-tellers, that is, they always tell the truth and those of the devilish tribe are liars, that is, they always tell a lie.
He asked some of them whether or not some are divine. They knew one another very much and always responded to him "faithfully" according to their individual natures (i.e., they always tell the truth or always a lie). He did not dare to ask any other forms of questions, since the legend says that a devilish member would curse a person forever when he did not like the question. He had another piece of useful informationf the legend tells the populations of both tribes. These numbers in the legend are trustworthy since everyone living on this island is immortal and none have ever been born at least these millennia.
You are a good computer programmer and so requested to help Akira by writing a program that classifies the inhabitants according to their answers to his inquiries.
Input
n p1 p2
xl yl a1
x2 y2 a2
...
xi yi ai
...
xn yn an
The first line has three non-negative integers n, p1, and p2. n is the number of questions Akira asked. pl and p2 are the populations of the divine and devilish tribes, respectively, in the legend. Each of the following n lines has two integers xi, yi and one word ai. xi and yi are the identification numbers of inhabitants, each of which is between 1 and p1 + p2, inclusive. ai is either yes, if the inhabitant xi said that the inhabitant yi was a member of the divine tribe, or no, otherwise. Note that xi and yi can be the same number since "are you a member of the divine tribe?" is a valid question. Note also that two lines may have the same x's and y's since Akira was very upset and might have asked the same question to the same one more than once.
You may assume that n is less than 1000 and that p1 and p2 are less than 300. A line with three zeros, i.e., 0 0 0, represents the end of the input. You can assume that each data set is consistent and no contradictory answers are included.
Output
Sample Input
2 1 1
1 2 no
2 1 no
3 2 1
1 1 yes
2 2 yes
3 3 yes
2 2 1
1 2 yes
2 3 no
5 4 3
1 2 yes
1 3 no
4 5 yes
5 6 yes
6 7 no
0 0 0
Sample Output
no
no
1
2
end
3
4
5
6
end
Source
输入三个数m, p, q 分别表示接下来的输入行数,天使数目,恶魔数目;
接下来m行输入形如x, y, a,a为yes表示x说y是天使,a为no表示x说y不是天使(x, y为天使,恶魔的编号,1<=x,y<=p+q);天使只说真话,恶魔只说假话;
如果不能确定所有天使的编号,输出no,若能确定,输出所有天使的编号,并且以end结尾
分析
参照ygeloutingyu的题解。
我们分析输入的数据不难发现,对于输入x, y, yes,假设x为天使,则y也为为天使,若x为恶魔,那么y也为恶魔,即x, y, 同为恶魔或者天使;
对于输入x, y, no,同理可得x, y, 一者为天使一者为恶魔;即可得ch为yes时,x, y, 属同种,ch为no时, x, y属异种
那么我们很容易就能想到带权并查集,d[x]表示x与其父亲节点的关系,d[x]=0表示x与其父亲节点属于同类,d[x]=1表示x与其父亲节点属于异类;通过并查集将能确定相对关系的编号放在一个集合里面,每个结合里面的编号可以分为两部分,和根节点属同种的的节点,以及和根节点属于异种的节点;这样并不能直接确定答案,我们确定了划分集合的个数以及每个集合里面和根节点同种的节点数目以及异节点的数目;从每个集合里面选择一种节点,若所有选中的节点数目和为p的选择方法唯一,那么我们能够确定所有天使的编号,反之则不能;关于这个问题我们可以用dp完美解决;
dp过程中记录下转移方案,最后倒推出答案即可。
时间复杂度\(O(n^2)\)
代码
#include<iostream>
#include<cstring>
#include<algorithm>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=1001;
int n,p1,p2,fa[N],d[N],s[2][N],f[N][N],g[N][N];
int a1[N],a2[N],p[N],ans[N];
int get(int x){
if(x==fa[x]) return x;
int root=get(fa[x]);
d[x]^=d[fa[x]];
return fa[x]=root;
}
void work(int a,int b,int k){
int x=get(a),y=get(b);
if(x==y) return;
fa[y]=x;
d[y]=k^d[a]^d[b];
s[0][x]+=s[d[y]][y]; // d[u]^d[y]=0
s[1][x]+=s[d[y]^1][y];
}
void True_Liars(){
memset(d,0,sizeof d);
for(int i=0;i<N;++i) fa[i]=i,s[0][i]=1,s[1][i]=0;
for(int i=1,a,b;i<=n;++i){
static char str[4];
read(a),read(b),scanf("%s",str);
work(a,b,str[0]!='y');
}
memset(a1,0,sizeof a1);
memset(a2,0,sizeof a2);
int cnt=0;
for(int i=1;i<=p1+p2;++i)if(i==get(i))
a1[++cnt]=s[0][i],a2[cnt]=s[1][i],p[cnt]=i;
memset(f,0,sizeof f);
f[0][0]=1;
memset(g,0,sizeof g);
for(int i=1;i<=cnt;++i){
for(int t=p1;t>=a1[i];--t)if(f[i-1][t-a1[i]])
f[i][t]+=f[i-1][t-a1[i]],g[i][t]=0;
for(int t=p1;t>=a2[i];--t)if(f[i-1][t-a2[i]])
f[i][t]+=f[i-1][t-a2[i]],g[i][t]=1;
}
if(f[cnt][p1]!=1) return puts("no"),void();
int num=0,now=p1+p2;
while(cnt>0){
int w=g[cnt][p1],k=p[cnt];
for(int i=1;i<=now;++i)
if(get(i)==k&&d[i]==w) ans[num++]=i;
p1-=w?a2[cnt]:a1[cnt],--cnt;
}
std::sort(ans,ans+num);
for(int i=0;i<num;++i) printf("%d\n",ans[i]);
puts("end");
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
while(read(n)|read(p1)|read(p2)) True_Liars();
return 0;
}
POJ1417 True Liars的更多相关文章
- POJ1417:True Liars(DP+带权并查集)
True Liars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- POJ1417 True Liars —— 并查集 + DP
题目链接:http://poj.org/problem?id=1417 True Liars Time Limit: 1000MS Memory Limit: 10000K Total Submi ...
- POJ1417 True Liars 并查集 动态规划 (种类并查集)
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ1417 题意概括 有一群人,p1个好人,p2个坏人. 他们说了n句话.(p1+p2<=600,n ...
- poj1417 true liars(并查集 + DP)详解
这个题做了两天了.首先用并查集分类是明白的, 不过判断是否情况唯一刚开始用的是搜索.总是超时. 后来看别人的结题报告, 才恍然大悟判断唯一得用DP. 题目大意: 一共有p1+p2个人,分成两组,一组p ...
- poj1417 True Liars[并查集+背包]
有一点小转化的题,在设计dp状态时还是有点费脑筋的. 地址. 依题意,首先可以知道肯定要扩展域的并查集(明摆着的嘛).一个"好人"域,一个"坏人"域,每句话分两 ...
- POJ1417 True Liars 题解
通过读题,容易发现,当回答为yes时 \(x,y\) 必属于同类,当回答为no时二者必为异类(并且当 \(x=y\) 时,回答必为yes,不过这题不用这个性质). 于是先按关系维护连通块,然后求出每个 ...
- True Liars POJ - 1417
True Liars After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was f ...
- 【POJ1417】【带标记并查集+DP】True Liars
Description After having drifted about in a small boat for a couple of days, Akira Crusoe Maeda was ...
- F - True Liars - poj1417(背包+并查集)
题意:有这么一群人,一群好人,和一群坏人,好人永远会说实话,坏人永远说假话,现在给你一组对话和好人与坏人的数目P1, P2. 数据里面的no是A说B是坏人, yes代表A说B是好人,就是这样,问题能不 ...
随机推荐
- U深度U盘启动盘制作教程
① 下载u深度u盘启动盘制作工具 ② 一个能够正常使用的u盘(容量大小建议在4g以上) 第一步:安装u深度u盘启动盘制作工具 双击打开已下载好的安装包,点击窗口中立即安装即可: 等待安装完成后,可以点 ...
- xml解析与生成的学习资料
xml解析与生成的学习资料:http://blog.csdn.net/u012325167/article/category/6129813 ----------------------------- ...
- RabbitMQ 队列、消息持久化
RabbitMQ的消息队列的持久化是一个很不错的功能,设置也非常简单.如下代码: 1.设置队列持久化(在声明队列的时候设置) channel.QueueDeclare(queue: "q.l ...
- C语言转义字符'\'
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- 查找xml中的接口名及涉及表名并输出
#! /usr/bin/env python3 # -*- coding:utf-8 -*- import xml.dom.minidom #该模块被用来处理xml文件 import re #正则表 ...
- 十一. Python基础(11)—补充: 作用域 & 装饰器
十一. Python基础(11)-补充: 作用域 & 装饰器 1 ● Python的作用域补遗 在C/C++等语言中, if语句等控制结构(control structure)会产生新的作用域 ...
- (C/C++学习笔记) 二十三. 运行时类型识别
二十三. 运行时类型识别 ● 定义 运行时类型识别(Run-time Type Identification, RTTI) 通过RTTI, 程序能够使用基类的指针或引用来检查(check)这些指针或引 ...
- Python实战之logging模块使用详解
用Python写代码的时候,在想看的地方写个print xx 就能在控制台上显示打印信息,这样子就能知道它是什么了,但是当我需要看大量的地方或者在一个文件中查看的时候,这时候print就不大方便了,所 ...
- 关于iOS开发常用的一些东西
备注:这里只是个人的观点,有的地方也是copy,多多指教,个人笔记,有侵犯你们版权的地方还望海涵!!! 1. 自定义键盘:inputView重写,可以用重写UITextField来实现 2. UIDa ...
- 线程安全的集合类、CopyOnWrite机制介绍(转)
看过并发编程的书,这两种机制都有所了解,但不扎实其实.看到别人的博客描述的很精辟,于是转过来,感谢! 原文链接:https://blog.csdn.net/yen_csdn/article/detai ...