BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ4990
题意概括
有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 abs(A[i]-B[j])<=4,则 A[i]和 B[j]间可以连一条边。现求在边与边不相交的情况下的最大连边数量。
题解
我们用dp[i][j]表示枚举到A序列的第i个位置,与B序列的第j个位置匹配,所得到的最大效益,这样显然是要超时的,但是不妨去思考一下。
dp[i][j]=max(dp[i-1][k](1<=k<=j))
于是我们又发现两个厉害的东西:
1. 由于每一个数字连出的边最多只有9种情况( abs(A[i]-B[j])<=4),所以转移的复杂度几乎舍去。
2. 我们发现其实这个东西可以用线段树来维护最大值(当前树状数组也可以的),那么时间复杂度就降成O(n*9 log n)的了。但是线段树的常数太大,被卡了,所以我们用树状数组就可以了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
void read(int &x){
x=0;
char ch=getchar();
while (!('0'<=ch&&ch<='9'))
ch=getchar();
while ('0'<=ch&&ch<='9'){
x=x*10+ch-48;
ch=getchar();
}
}
const int N=1e5+5;
int n,a[N],b[N],pos[N],ps[10];
int c[N];
int lb(int x){
return x&-x;
}
void update(int x,int d){
for (;x<=n;x+=lb(x))
c[x]=max(c[x],d);
}
int query(int x){
int ans=0;
for (;x>0;x-=lb(x))
ans=max(ans,c[x]);
return ans;
}
int main(){
read(n);
for (int i=1;i<=n;i++)
read(a[i]);
for (int i=1;i<=n;i++)
read(b[i]),pos[b[i]]=i;
memset(c,0,sizeof c);
for (int i=1;i<=n;i++){
int tot=0;
for (int j=a[i]-4;j<=a[i]+4;j++)
if (1<=j&&j<=n)
ps[++tot]=pos[j];
sort(ps+1,ps+tot+1);
for (int j=tot;j>=1;j--)
update(ps[j],query(ps[j]-1)+1);
}
printf("%d",query(n));
return 0;
}
BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组的更多相关文章
- BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...
- [BZOJ4994] [Usaco2017 Feb]Why Did the Cow Cross the Road III(树状数组)
传送门 1.每个数的左右位置预处理出来,按照左端点排序,因为左端点是从小到大的,我们只需要知道每条线段包含了多少个前面线段的右端点即可,可以用树状数组 2.如果 ai < bj < bi, ...
- [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II dp
4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II Time Limit: 10 Sec Memory Limit: 128 MBSubmi ...
- 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp
题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...
- [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II
Description Farmer John is continuing to ponder the issue of cows crossing the road through his farm ...
- BZOJ 4990 [USACO17FEB] Why Did the Cow Cross the Road II P (树状数组优化DP)
题目大意:给你两个序列,你可以两个序列的点之间连边 要求:1.只能在点权差值不大于4的点之间连边 2.边和边不能相交 3.每个点只能连一次 设表示第一个序列进行到 i,第二个序列进行到 j,最多连的边 ...
- Why Did the Cow Cross the Road III(树状数组)
Why Did the Cow Cross the Road III 时间限制: 1 Sec 内存限制: 128 MB提交: 65 解决: 28[提交][状态][讨论版] 题目描述 The lay ...
- [BZOJ4993||4990] [Usaco2017 Feb]Why Did the Cow Cross the Road II(DP + 线段树)
传送门 f[i][j]表示当前第i个,且最后一个位置连接到j 第一维可以省去,能连边的点可以预处理出来,dp可以用线段树优化 #include <cstdio> #include < ...
- [Usaco2017 Feb]Why Did the Cow Cross the Road II (Platinum)
Description Farmer John is continuing to ponder the issue of cows crossing the road through his farm ...
随机推荐
- Javascript定义变量
在JavaScript中通过var来定义变量,不管是数字还是字符串,都可以通过这种方式来定义:我们既可以在声明变量的同时给变量赋值,也可以先声明变量,再给变量赋值. <script> va ...
- NOIP2016 D2-T3 愤怒的小鸟
看了题解之后知道,是状压dp. 一.首先预处理一个$2^n$次方的fpow[]数组 fpow[]=; ;i<=;i++)fpow[i]=(fpow[i-]<<); 二.然后预处理一个 ...
- 为小程序开发创建本地mock数据服务器
开发时使用easy-mock的服务,不是大厂就不是大厂,实在恶心,每天都会有卡的这么一段时间 于是,自己建个本地mock服务算了,想使用express 但是必须把json数据里面的不同对象,分配到不同 ...
- 初识CPU卡、SAM卡/CPU卡简介、SAM卡简介 【转】
初识CPU卡.SAM卡/CPU卡简介.SAM卡简介 IC卡按照接口方式可分为接触式卡.非接触式卡.复合卡:按器件技术可分为非加密存储卡.加密存储卡和CPU卡. 加密存储卡是对持卡人的认证,只有输入正确 ...
- lxde 的安装和卸载以及注意事项,lubuntu
安装: $ sudo apt install lxde $ sudo apt install lxde-common 安装完毕后,可能没法关机及logout,可以使用如下安装: $ sudo apt ...
- ubuntu 的 apt-get update 出现404错误时,或者添加ppa失败时,ubuntu 版本也 end of life 了的解决方案
xmodulo.com/how-to-fix-apt-get-update-error-on-ubuntu.html 如果是依赖没找到,可以用 sudo apt-get install -f 先补齐依 ...
- Python3学习笔记19-继承和多态
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承, 新的class称为子类(Subclass),而被继承的class称为基类.父类或超类(Base class.Sup ...
- 去除Many2one字段的“创建并编辑”选项
要去除Many2one字段的“创建并编辑”选项,只要在view.xml里对应的field定义里增加options="{'no_create_edit':1}即可 <field name ...
- nagios系列(五)之nagios图形显示的配置及自定义插件检测密码是否修改详解
nagios图形显示的配置 在服务端安装相关软件 #1.图形显示管理的依赖库 yum install cairo pango zlib zlib-devel freetype freetype-dev ...
- mongodb数据库集群及sharding分片配置
复制集群的配置 1.安装mongodb数据库 在主节点和从节点上都安装mongodb # rpm -ivh mongo-10gen-2.4.6-mongodb_1.x86_64.rpm mongo-1 ...