loj#2015. 「SCOI2016」妖怪 凸函数/三分
题目链接
题解
对于每一项展开
的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\)
令$T = \frac{a}{b} $
原式$=atk+Tdnf + dnf + \frac{atk}{T} $
这就是那个单峰的对勾函数,
把单峰函数复合为求最值,发现也是个单峰函数(下凸壳)
三分就好了
或者维护一个最大值得下凸壳
代码
#include<cstdio>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define db double
const int maxn = 5000007;
db atk[maxn],dnf[maxn];
int n;
db calc(db T) {
double ret = 0.0;
for(int i = 1;i <= n;++ i) {
db tmp = dnf[i] + atk[i] + dnf[i] / T + atk[i] * T;
ret = std::max(tmp,ret);
}
return ret;
}
int main() {
n = read();
for(int i = 1;i <= n;++ i)
scanf("%lf%lf",atk + i,dnf + i);
db l = 0,r = 10.0;
for(;r - l >= (1e-12);) {
db m1 = l + (r - l) / 3.0,m2 = r - (r - l) / 3.0;
db c1 = calc(m1),c2 = calc(m2);
if(c1 > c2) l = m1;
else r = m2;
}
printf("%.4lf\n",std::min(calc(r),calc(l))) ;
return 0;
}
loj#2015. 「SCOI2016」妖怪 凸函数/三分的更多相关文章
- LOJ#2015. 「SCOI2016」妖怪(凸包)
传送门 首先可以把每个妖怪看成二维平面上的一个点,那么每一个环境\((a,b)\)就可以看成一条斜率\(k=-\frac{b}{a}\)的过该点的直线,战斗力就是这条直线在两坐标轴上的截距之和 对于每 ...
- 【LOJ】 #2015. 「SCOI2016」妖怪
题解 这道题教会我很多东西,虽然它是个傻逼三分 1.long double的运算常数是巨大的 2.三分之前的界要算对!一定要算准,不要想一个直接写上! 3.三分100次也就只能把精度往里推20多位,可 ...
- 「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...
- loj#2013. 「SCOI2016」幸运数字 点分治/线性基
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 ...
- loj#2016. 「SCOI2016」美味
题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数 ...
- loj#2012. 「SCOI2016」背单词
题目链接 loj#2012. 「SCOI2016」背单词 题解 题面描述有点不清楚. 考虑贪心 type1的花费一定不会是优的,不考虑, 所以先把后缀填进去,对于反串建trie树, 先填父亲再填儿子, ...
- loj #2013. 「SCOI2016」幸运数字
#2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...
- LOJ #2013「SCOI2016」幸运数字
时限为什么这么大啊 明摆着放多$ log$的做法过啊$QAQ$ LOJ #2013 题意 有$ Q$次询问,每次询问树上一条链,点有点权,你需要选择一些链上的点使得异或和尽量大 点数$ \leq 2* ...
- LOJ#2014「SCOI2016」萌萌哒(倍增,并查集优化连边)
题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1,r1,l2 ...
随机推荐
- freeRTOS中文实用教程4--资源管理互斥
1.前言 访问一个被多任务共享,或是被任务与中断共享的资源时,需要采用”互斥”技术以保证数据在任何时候都保持一致性.这样做的目的是要确保任务从开始访问资源就具有排它性,直至这个资源又恢复到完整状态 F ...
- GCC选项_-Wl,-soname 及 DT_NEEDED 的解释
-Wl选项告诉编译器将后面的参数传递给链接器. -soname则指定了动态库的soname(简单共享名,Short for shared object name) soname的关键功能是它提供了兼容 ...
- 『实践』Matlab实现Flyod求最短距离及存储最优路径
Matlab实现Flyod求最短距离及存储最优路径 一.实际数据 已知图中所有节点的X.Y坐标. 图中的节点编号:矩阵中的编号 J01-J62:1-62; F01-F60:63-122; Z01-Z0 ...
- sqlserver2008r2数据库使用触发器对sa及其他数据库账号访问进行IP限制
一.只允许指定IP访问数据库 创建测试账号 CREATE LOGIN testuser WITH PASSWORD = '123' GO CREATE TRIGGER [tr_connection_l ...
- vue系列之核心思想
1.数据驱动 只要改变数据,Vuejs会通过Directives指令对DOM进行封装,当数据发生变化,会通知相应的DOM进行变化 Vuejs会对DOM进行监听,通过DOMListeners监听视图的变 ...
- 20175225 《Arrays和String单元测试》
---恢复内容开始--- 题目 在IDEA中以TDD的方式对String类和Arrays类进行学习,测试相关方法的正常,错误和边界情况 - String类 - charAt - split - Arr ...
- java多线程快速入门(十五)
使用violate关键字解决了变量的可见性问题(volatile让多线程刷新falg的值) package com.cppdy; class MyThread11 extends Thread { / ...
- php-fpm 配置文件检测
用过 Nginx 的兄弟都知道,修改 Nginx 配置文件之后,可以使用 nginx -t 来检测配置文件是否有语法错误. 今天配置 opcache 的时候,发现 php-fpm 也可以检测 php- ...
- Mac 下 Redis 5.0 的卸载与安装
卸载 停止 redis 服务器 redis-cli shutdown 检测 #检测后台进程是否存在 ps -ef |grep redis #检测6379端口是否在监听 netstat -lntp | ...
- 08 IO库
#include<iostream> #include<vector> #include<string> #include<fstream> using ...