原题链接:填数字

顺便推荐一下,偶然看到这个OJ,发现社区运营做得很赞,而且交互和编译环境都很赞(可以编译包括Python,Ruby,Js在内的脚本语言,也可以编译新标准的C/C++11,甚至包括Go和C Sharp等),虽然暂时不太火,但估计会逐渐成为国内算法界非常受欢迎的OJ社区。

主页:http://www.51nod.com/index.html


  

  本题是个题意简单的,思路复杂的DP题,说实话,光是想出这种DP就已经非常不易了,即便写出来也要考虑清楚每一种转移的公式和数值关系。

  

  原题:有n(1-200)行格子,第i(1<=i<=n)行有i个格子,每行格子是左对齐。现在要在每一个格子填入一个非负整数,最后使得每一行每一列的和都不超过2。

     请计算有多少种方案,答案比较大,请输出对100,000,007(1e8+7)取余后的结果。

     下图是n=4的时候格子的摆放。

      

 //务必注意理清每次状态转移方程的思路和公式
//博主因为一个地方写多了个+1,结果WA了5发....
//Memory:34900K Time:93Ms
#include<iostream>
using namespace std; #define MAX 201
#define MOD 100000007 #define COL_0 (i - j - k - 1) //和为0的列数
/*
* dp[i][j][k]
* i:表明当前行
* j:表明i行完成时有多少列为1
* k:表明j行完成时有多少列为2
* dp值表明该状态下的情况数
* 每次由 i-1行 -> i行 转移同j同k的状态
*/
__int64 dp[MAX][MAX][MAX]; int main()
{
int n;
scanf("%d", &n);
dp[][][] = dp[][][] = dp[][][] = ;
for (__int64 i = ; i <= n; i++)
for (__int64 j = ; j <= i; j++)
for (__int64 k = ; k <= i - j; k++)
{
//最后一格为0时
//-可+2
if (i - j - k - >= )
dp[i][j][k + ] = (dp[i][j][k + ] + dp[i - ][j][k] * COL_0) % MOD;
//-可+1
//--两个1_0-0
if (i - j - k - >= )
dp[i][j + ][k] = (dp[i][j + ][k] + dp[i - ][j][k] * (COL_0 * (COL_0 - ) / )) % MOD;
//--两个1_1-0
if (j >= && i - j - k - >= )
dp[i][j][k + ] = (dp[i][j][k + ] + dp[i - ][j][k] * COL_0 *j) % MOD;
//--两个1_1-1
if (j >= )
dp[i][j - ][k + ] = (dp[i][j - ][k + ] + dp[i - ][j][k] * (j*(j - ) / )) % MOD;
//--一个1_1
if (j >= )
dp[i][j - ][k + ] = (dp[i][j - ][k + ] + dp[i - ][j][k] * j) % MOD;
//--一个1_0
if (i - j - k - >= )
dp[i][j + ][k] = (dp[i][j + ][k] + dp[i - ][j][k] * COL_0) % MOD;
//什么都不加
dp[i][j][k] = (dp[i][j][k] + dp[i - ][j][k]) % MOD; //最后一格为1时
//-可+1_0
if (i - j - k - >= )
dp[i][j + ][k] = (dp[i][j + ][k] + dp[i - ][j][k] * COL_0) % MOD;
//-可+1_1
if (j >= )
dp[i][j][k + ] = (dp[i][j][k + ] + dp[i - ][j][k] * j) % MOD;
//什么都不加
dp[i][j + ][k] = (dp[i][j + ][k] + dp[i - ][j][k]) % MOD; //最后一格为2时
dp[i][j][k + ] = (dp[i][j][k + ] + dp[i - ][j][k]) % MOD;
} __int64 sum = ;
for (int j = ; j <= n; j++)
for (int k = ; k <= n - j; k++)
sum = (sum + dp[n][j][k]) % MOD;
printf("%I64d\n", sum); return ;
}

ACM/ICPC 之 DP进阶(51Nod-1371(填数字))的更多相关文章

  1. 51NOD 1371填数字

    传送门 分析 此题关键在于想出dp[i][j][k]代表考虑到第i行,还能放1的的共有j列,还能放2的共有k行.之后就枚举每一行是没有还是1个1还是2个1还是1个2,然后转移即可. 代码 #inclu ...

  2. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  3. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  4. 2016 ACM/ICPC Asia Regional Shenyang Online 1007/HDU 5898 数位dp

    odd-even number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5000 2014 ACM/ICPC Asia Regional Anshan Online DP

    Clone Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total Submiss ...

  6. 【转】lonekight@xmu·ACM/ICPC 回忆录

    转自:http://hi.baidu.com/ordeder/item/2a342a7fe7cb9e336dc37c89 2009年09月06日 星期日 21:55 初识ACM最早听说ACM/ICPC ...

  7. ACM ICPC Kharagpur Regional 2017

    ACM ICPC Kharagpur Regional 2017 A - Science Fair 题目描述:给定一个有\(n\)个点,\(m\)条无向边的图,其中某两个点记为\(S, T\),另外标 ...

  8. 2014嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛

    比赛链接: http://202.197.224.59/OnlineJudge2/index.php/Contest/problems/contest_id/36 题目来源: 2014嘉杰信息杯ACM ...

  9. 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)

    摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...

随机推荐

  1. linux安装软件通常会做哪些事

    一般来说,安装某个包,某个服务,某个软件时,可能会做以下事情(不一定全部) - 在安装目录: /usr/bin, /usr/lib: /usr/you_specified_bin/, /usr/you ...

  2. (2)apply函数及其源码

      本文原创,转载请注明出处,本人Q1273314690(交流学习) 总结: 就是MARGIN决定了你的FUN调用几次,每次传递给你的是什么维度的内容,而...是传递给FUN的(每次调用的时候都会被传 ...

  3. ajax浅析---UpdatePanel

    使用UpdatePanel控件 UpdatePanel可以用来创建丰富的局部更新Web应用程序,它是ASP.NET 2.0 AJAX Extensions中很重要的一个控件,其强大之处在于不用编写任何 ...

  4. substr — 详解

    substr — 返回字符串的子串 举例说明: string substr ( string $string , int $start , int $length ) 返回字符串 string 由 s ...

  5. 第2月第1天 命令(Command)模式

    http://www.tracefact.net/Design-Pattern/Command.aspx 命令模式把一个请求或者操作封装到一个对象中.命令模式允许系统使用不同的请求把客户端参数化,对请 ...

  6. EasyUI中Dialog的使用

    $(function () { $('<div id="dlgContent"></div>').appendTo($('body')); $('#dlgC ...

  7. 百度定位API报错:leaked ServiceConnection com.baidu.location.LocationClient$1@426122f0

    使用百度MapApi定位时候,当退出当时使用的activity后,则会报如题的异常,解决办法: 1:当退出当前定位的activity时,一定要在onDestroy方法中要mLocClient.stop ...

  8. iOS开发——UI进阶篇(八)pickerView简单使用,通过storyboard加载控制器,注册界面,通过xib创建控制器,控制器的view创建,导航控制器的基本使用

    一.pickerView简单使用 1.UIPickerViewDataSource 这两个方法必须实现 // 返回有多少列 - (NSInteger)numberOfComponentsInPicke ...

  9. smem – Linux 内存监视软件

    导读 Linux 系统的内存管理工作中,内存使用情况的监控是十分重要的,在各种 Linux 发行版上你会找到许多这种工具.它们的工作方式多种多样,在这里,我们将会介绍如何安装和使用这样的一个名为 sm ...

  10. osx xcode 创建python项目

    http://stackoverflow.com/questions/5276967/python-in-xcode-7