hdu4982 Goffi and Squary Partition (DFS解法)
http://acm.hdu.edu.cn/showproblem.php?pid=4982
Goffi and Squary PartitionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 308 Accepted Submission(s): 106Problem Description
Recently, Goffi is interested in squary partition of integers.
A set \(X\) of \(k\) distinct positive integers is called squary partition of \(n\) if and only if it satisfies the following conditions: [ol]
Input
Input contains multiple test cases (less than 10000). For each test case, there's one line containing two integers \(n\) and \(k\) (\(2 \le n \le 200000, 2 \le k \le 30\)).
Output
For each case, if there exists a squary partition of \(n\) to \(k\) distinct positive integers, output "YES" in a line. Otherwise, output "NO".
Sample Input
2 2
4 2 22 4 Sample Output
NO
YES YES Source
Recommend
|
题意:给出n和k,求k个不同的正整数,使其中k-1个数能组成平方数,k个数的和为n。有解输出YES,无解输出NO。
题解:从大到小枚举小于n的平方数,剪枝搜索是否有解。
先判一下是不是1~k这最小的k个数加起来都超过n,这种情况肯定不可能,真去搜一遍的话太费时间了,还是特判掉比较好。
if((+k)*k/>n)return ;
枚举平方数,进入搜索:
t=sqrt(1.0*n);
if(t*t==n)t--;
for(i=t; i>=; i--) {
int lost=i*i;
Remove(n-lost);
if(dfs(lost,,R[n]))return ;
Resume(n-lost);
}
↑(这个在函数里,return 1是有解。)
这题每个数只用一次,所以枚举一个数,下个数可以从这个数+1开始枚举。我使用了DancingLinks那种超碉的结构,不过其实只用一个used[]就好了……
比赛的时候这样就能过了,因为n大的时候很容易就找到解,dfs不耗多长时间。不过今天一看居然加强了数据,会TLE,所以我们来加个剪枝:
当枚举第x个数时,剩下(k-x+1)个数,枚举i为当前的数,如果i+ (i+1)+(i+2)+...+(i+k-x)这以i开头的最小的k-x+1个数都大于剩下的数了,就不用继续枚举i了。
等差数列求和,(i + i+(k-x))*(k-x+1)/2 > lost,搞一搞可以把 i 移出来,得到i的最大值。
DFS代码:
bool dfs(const int &lost,const int &x,const int &now) {
if(x>k) {
if(lost==)
return ;
else return ;
}
if(lost<=)return ;
if(x!=k) {
int maxi=((lost+lost)/(k-x+)-(k-x))/;///剩下的大于i的最小的(k-x+1)个数加起来超的话就跳
maxi=min(maxi,n-);
for(int i=now; i<=maxi; i=R[i]) {
Remove(i);
if(dfs(lost-i,x+,R[i]))return ;
Resume(i);
}
} else {
if(L[R[lost]]==lost) {
Remove(lost);
if(dfs(,x+,R[lost]))return ;
Resume(lost);
}
}
return ;
}
(这题的正解好像是各种情况都考虑一下,直接几个if就判出来了……我是不太懂)(还有官方题解说平方数只用枚举最大的那个就行,可是8 2这组数据,最大的平方数是4,然后就逗乐啊……虽然好像只有这一组数据有问题)
全代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) prllf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back const int maxn=;
int L[maxn],R[maxn];
inline void Remove(int x) {
L[R[x]]=L[x];
R[L[x]]=R[x];
} inline void Resume(int x) {
L[R[x]]=x;
R[L[x]]=x;
} int n,k; bool dfs(const int &lost,const int &x,const int &now) {
if(x>k) {
if(lost==)
return ;
else return ;
}
if(lost<=)return ;
if(x!=k) {
int maxi=((lost+lost)/(k-x+)-(k-x))/;///剩下的大于i的最小的(k-x+1)个数加起来超的话就跳
maxi=min(maxi,n-);
for(int i=now; i<=maxi; i=R[i]) {
Remove(i);
if(dfs(lost-i,x+,R[i]))return ;
Resume(i);
}
} else {
if(L[R[lost]]==lost) {
Remove(lost);
if(dfs(,x+,R[lost]))return ;
Resume(lost);
}
}
return ;
} bool farm(int _n,int _k) {
int t;
int i,j;
n=_n;
k=_k;
if((+k)*k/>n)return ;
for(i=; i<=n; i++) {
L[i]=i-;
R[i-]=i;
}
L[]=n;
R[n]=;
t=sqrt(1.0*n);
if(t*t==n)t--;
for(i=t; i>=; i--) {
int lost=i*i;
Remove(n-lost);
if(dfs(lost,,R[n]))return ;
Resume(n-lost);
}
return ;
} int main() {
int i;
int n,k;
while(scanf("%d%d",&n,&k)!=EOF) {
if(farm(n,k))printf("YES\n");
else printf("NO\n");
// for(i=0;i<r;i++)
// printf("%d ",b[i]);
// puts("");
}
return ;
}
hdu4982 Goffi and Squary Partition (DFS解法)的更多相关文章
- hdu 4982 Goffi and Squary Partition
Goffi and Squary Partition Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Subm ...
- HDU 4982 Goffi and Squary Partition(推理)
HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...
- 【HDOJ】4982 Goffi and Squary Partition
题意就是整数划分,选出和为n的K个整数,其中K-1个数的和为完全平方数S.选择整数时需要从1,2,3..连续选择,当选择整数与n-S相等时,需要跳过n-S,即选择n-S+1.如此选择K-2个数,从而可 ...
- Goffi and Squary Partition
题意: 给你N和K,问能否将N拆分成K个互不相同的正整数,并且其中K-1个数的和为完全平方数. PS:这道题目原来是要求输出一种可行方案的,所以下面题解是按照输出方案的思想搞的. 分析: 我们尝试枚举 ...
- BestCoder6 1002 Goffi and Squary Partition(hdu 4982) 解题报告
题目链接:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?pid=1002&cid=530 (格式有一点点问题,直接粘 ...
- UVALive 6450 Social Advertising DFS解法
题意:一些人有朋友关系,在某个人的社交网站上投放广告可以被所有该人的直接朋友看到,问最小投放多少个广告使给出的人都看到广告.(n<=20) 解法:看到n的范围可以想到用二进制数表示每个人被覆盖与 ...
- HDU 1312 Red and Black --- 入门搜索 DFS解法
HDU 1312 题目大意: 一个地图里面有三种元素,分别为"@",".","#",其中@为人的起始位置,"#"可以想象 ...
- HDU1150Machine Schedule(二分图最大匹配的DFS解法)
题目大意就是说有两台机器,分别有n,m种模式可以调节,有k个工作,某一个工作i可以在第一台机器的a[i]模式下或第二台机器的b[i]模式下工作,两台机器的初始模式为0,问如何分配这K件工作使得两台机器 ...
- 分酒问题(DFS解法)
题目大概是这样: 已知有三个容量分别为3千克.5千克和8千克的并且是没有刻度的酒瓶,3千克和5千克的瓶子均装满了酒,而8千克的瓶子为空.现要求仅用这三个酒瓶将这些酒均分为两个4千克并分别装入5千克和8 ...
随机推荐
- codeforces 723D: Lakes in Berland
Description The map of Berland is a rectangle of the size n × m, which consists of cells of size 1 × ...
- 环信webim1.1.2版本在windows下npm环境搭建错误解决
1.1.2版本的webim从ui到整体的代码结构都做了很大改变,从代码结构上采用node.js的环境进行开发和打包,最终打包的输出项目,不依赖node.js的环境进行运行,得益于webpack的打包实 ...
- android布局学习-使用FrameLayout和LinearLayout制作QQ空间底部导航栏
[声明:本博客通过学习“J灬叶小超 ”博客而写,链接:http://www.cnblogs.com/yc-755909659/p/4288260.html] --------------------- ...
- Bzoj1189 [HNOI2007]紧急疏散evacuate
1189: [HNOI2007]紧急疏散evacuate Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2293 Solved: 715 Descr ...
- zip压缩与解压缩示例
范例: zip命令可以用来将文件压缩成为常用的zip格式.unzip命令则用来解压缩zip文件. 1. 我想把一个文件abc.txt和一个目录dir1压缩成为yasuo.zip: # zip -r y ...
- Aspx生命周期
今天去面试,碰到面试官问这个问题.aspx页面生命周期是什么?顿时懵逼 还跟我解释:就是页面怎么解析的aspx页面.果断没看过这方面知识,没答上来.现在记录一下 ASP.NET页面生命周期 ASP.N ...
- 跨平台开发之阿里Weex框架环境搭建(二)
爱编程爱分享,原创文章,转载请注明出处,谢谢! http://www.cnblogs.com/fozero/p/5995195.html 上篇文章(http://www.cnblogs.com/foz ...
- POJ 1064 Cable master (二分)
题目链接: 传送门 Cable master Time Limit: 1000MS Memory Limit: 65536K 题目描述 有N条绳子,它们长度分别为Li.如果从它们中切割出K条长 ...
- ApkTool反编译apk,去除广告或者汉化后重新打包apk,并签名
http://my.oschina.net/mopidick/blog/135581 以ubuntu的环境为例子,window的大同小异 首先下载apktool工具:https://code.goog ...
- CSS3系列一(概述、选择器、使用选择器插入内容)
CSS3模块化结构 CSS历史发展 CSS(Cascading Style Sheet),层叠样式表,是用于控制网页样式并允许将样式信息与网页内容分离的一种标记性语言. CSS3属性选择器 E[att ...