aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAr8AAAHxCAIAAADrwUM4AAAgAElEQVR4nO3dLXLjytfH8f8mzLOQYC1kUiZhoQ8ZIuKg8CGp8goCMhVqfkGqLkmYWeBdgh6gt345ffocWU4ynu+npmpiWW61WrL751bb/l8HAADg8b+vrgAAAPjDkB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QH4Az3f3F1dv7znCzePz8pDNtoKmY+H693D23Tz9XZz19x/pAXevMqPfntp4vUBXBDSA/Alnh6vNneWf3kH/H6/G+4Ne+65wEI+eHtpNndXm7vbp3nZGCnCf8PDp7v69bPw8XqblRb4eLgO1ld2tt+FsW7JXVL1vBkIwDmQHoAvsSQ9DB227V8/bDD14tK/65eHcnoINtcvGW729ZkTTPAvShJjIGjuP0gPwMUhPQBfYuhQw0sDiai3Dpesnx5uXjv5SsTr7ebxWezapX+3T3Mqun0aN51dYYn2JUwP05p9IXNNhqIK4xwAPh/pAfgSS9KDYOjywx66VvL7/W4qM0gM5SsRpfQgxoI5PfR/7x6ePqzpQRyW6DrSA/D9kB6AL/Gp6eH1drw5XXHoi53TQ/+opJzpZjI2IF656Dv7MD1obGMPhUseTMYEvhrpAfgSi9JDeR5A6cpF+KhhrsDU8d8+zemh/0O6SvL43AnpQRgtyNNDYdDi9qmzjj2QHoBvivQAfIklsybVSQyF9BBmhcmYJ3bNMDVhl34c4+3jfarhzWvWuweTFpPBhnOkh2AqRr87pAfgq5EegC9xwmcuhNEIeWZi0CtPHXDQT88TG29ex5ARj4U8PRZ69yk9DCXMVRLSw1RmOH0hTg96K40xorn/ID0A3wPpAfha8dcwjL24+IlEYWJjJT305V+/PN/vog9WjOsHsybVj0jMVy76OozVGypfGIqwpofSZ0l2D/ekB+B7Ij0AXyueAKGlB/MnJ4d/ySREaTwj+pRmNhXj+Sa+a+7pH2+lGRjhVzusmx6m0EB6AL4H0gPwpZK4oKUH88WOND2kj50Lj9JD+mWUwVWJk9JD+k+7cpFNdAhqoswwBfDJSA/AVxo70bGnV69cBJIkEV9uGAoRF+ajC8X0MF8omd/xJx++MF25MKSHqdhwv4atpHNF+dYH4BsgPQBfJ/ktiS5PD28vTd5fTr3y9GWRUVCY50JOi/KvZ4h+veLmMbh2MGaLIBn0q82BwJcexDED+TMXzfUuXzjW6lWoJICvQXoAvsjcowvfwjT2x/mXL8W/hjXPgixObgjeu0er7R7epvTwMq4z98rBAEYwU9KVHjRxekgqf/Padd3708ttFoPyn/oE8BVID8AXCEfjo4sUyScn4zAR54Cu66LPUMRzD4ceN1gYfWgz/iFN6WOT8tdQil8KuSA9jKuFX3nZ3L/av9CC6xfAlyI9AJ+tGB26rvy9SeHyoLOvf2Iz+JrqXDk9zJ+P6BPM/OUQwWcfhFkX5fQg/SxnX7E+4uRfjqn84zc2ga9FegC+wMfDdXH4PetlwzkQaQ4wpIeFNXy/f5x69Of7l/fkG6+jb50KHqeMPWTBKFjn4+Fm9V0AcD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3rA93Zom+3+ON087rfj7UPbSLb7Y7/apD1EN6elU4HtoTvut+Fmws0PK/4Flu9sqfnS4ksr2Y9XxyEDvgXSA75anALSDkHocvReaEoP7WFaMN0Miuhvj/ekXdG4woKuKPk+5vknJKbfiQh/o0FcqCw/p/Omh+wgSPfVjld3lkPWS797O/7VMfGnyJIfD1N+oiz/QZCp1mF1D+3wHEizcT2cAZ+L9ICvFoSBWlSodgxpehgeUHwvK90xvngv7YqeHoMfsJh+Tvr1dv5Zh+lvcaHy95k5drYw8JP2dmL7FliOV6nIEw/Z8NsiyW+IiC1fOBz1g6405FjdQzvvZ5wqDi35Ad8N6QFfLU0P+/IViWjIQOpc4vQwvTstvZedN+19I3vcb22v5883449cB+873+93xYVdV1yetFrT7qdm6Efyk4426uMNPaovPYR7n19fcgwYdebj1Z3pkL29NNagYApzw0F3pYfjfpvmhfhiDddj8L2QHvDVlow9JD1Htvy43/Z9a3x9InvA8TgUcqb08DT8TOXYnYTLH2+lhc+dvHJ6/WIa4h4rE90Y6x68Y2/rUWdxekjbN0sP/QrlmSrW49Wd5ZC93++kHyldmh6eHsNfHrelh2xwIUoPwWwf4LsgPeCrZfMeor6jmB4MYw+VkfDysPp2vz/xIvrwK9tjn3Se9BCNMWRdjb/LWZoeovQyLEinugoFBw876UrTyYfs+ebu6noXTFzoWzuetSBOZYjHhJKDrq88N2Sz3eYjC2nSYuAB3w3pAV9NGHsIupsTxh7mrmS4GfUrcSez+hS83ttLs7lr7j++Ij3MXa01QyxLD8P2wrf2UWuK7/nDS/zdguOVbqQ75ZA930TzGZObXdcNOSDt/sWF80E3rdyPIW23aUDgygW+O9IDvpp85SLoC05MD8FoRphOim9ym7DjOvnjf/2o+MNXpIfpljVC+NNDX3o8zyL+MOWhbbbbbXk6S/LuunK8urMcsrTB316adAalfHWjcMnDs/J46NKMlXwWI7sNfDXSA77awnkPUt8TpYfgjnksYxgQDt83B58UnJeslh6GN7LnmTVpSA/lZbkFn7nICh1nMPR39CXWDqv9eHVnOWRpvz5PXCivU17YyaMXlfTQJUksSQsMPuDbIT3gq2XzHtJ762MPk2zsYVo8XVZv055W7IqCzTun4D3fBBPl5sn8a39i0zLvoQ0bztD3LP/MRSIfGjKkB8vx6s5yyILPWHbDN23cvL7f7+arD+PFCHFhVzjopZXThkjGbqbclXwCg/CA74X0gK+2ZOyhVpbQGwXRZH4tjruiYXBd6MYySlf09Bh+QVDY8T/fCF8AJS5Uls97Wht7CGOZaerDt0oP4vHqznPIui6a4TiNAOXHsXRwXSsnDZHv+XZ/TGZN8okLfDukB3xLwYtnfDFY7BiytfO3o9JYfjwtLVpD+PKEy3dyepiPQzqfMbxUJKzhPl4dhwz4WqQHAL2TJ3kA+GuQHgD0SA8ArEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAXLThexsN3+XAjykAMCM9ABck/HmE5BfO81/KSn5LQeRLE28vTfWXHQBcAtIDcImGsQY5IMx5YggHyQ9LLP7SyafH+Wcknx4JEMDlIj0AF+TQTj8TNv5Q45ADhB81H38AWyH9tmPlxyonHw/X0m9SA7gEpAfgkgwhYQgGcjgIfhB9ydiDNT283m5ID8ClIj0Al2UODu0hyAGFsYcpPZw030Hwfr+72uwe3k4sBsD3RHoALkw4NmBMD6t7e2kYeAAuGekBuDTBpyvEWZNDijjut017KH/wYnGyIDoAl4/0AFyYPg/0EUEbe4g+zBndd2hNExtERAfgr0B6AC5KnwT6cQU1PcSR4bjfNtv90TIlUlmFT2kCfwvSA3BBxtQQfWZTvCiRjDcc91vrJYtyeni+mb8qavz3+LzuHgL4FkgPwOXI5kEWJ0b2d8zhIvnA5nqfvQBwkUgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfMT08PR4tbm7unkdb7/ebu6uNo/P6d9d13Xv97tgzbyE19tgZQAA8Oc7MT30a27ubp/kEp5v7q42d1eb3cPbufYAAAB8Lj09vL00m777l//dPnXv97ureDQiKqEfnCA9AABwOdL00A8tjP+uX97nhfKVi677eLi+u336eL9/VHLGWBQAAPjTnTzvQTJGkHw+BAAA+OOZ0kNJMFARrDxey+jnPXDNAgCAC1NJDx8P17WLEdJARXO9C9bkMxcAAFwSU3roxw+Caxb9bEopPTzf3F1tHp+Tz1ww6QEAgMuhpIfN3dX1460rPUx/Z6MXzf3HJ+4VAAA4nyQ9hB/R9I49DI99fO7iSDGWmX4nBAAA+COtNu/hsZ9BOYwxxJcz3u93jD0AAHAp1pz38Ho7zW+wfmoDAAD8cdaeNZmVAAAALsyp6SG4tEFWAADgryClh/7rnpr7j+q8h4ebKVuoazJrEgCAy5GmhykE9F/xFI49BIaxh8eHmx2ZAACAv4x45QIAAKCI9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8Tk0PTdNUl+jLF2zCtcKC7YYPWVxtpQSxTHtL2lc465orFmJpcGOjLdjiWX3CrjWjBdU7k6ky+R8nFuha0/ioT352iOWscnpX9/2Tn0TJCuu28+oHt7r+KZ3dt3rBcRWikNNDU7a4uv1dSrH5Vixbt+xqfhKL2xIfsspRdzWRfTX7iW6/+Zknn2ujp7/wrb6bp2y0tE51ofFJYaybbsGaSeXXeh5ZaphvyNjgn/bsUB5++umtl7/WVlytsXgfjVWyrKaso5y3lofoK594qkwPtAg3YTz/9aewscLF9FBdXt0fpUBxV6srJwstDSrWqtS+1Q0JLaIyNpGrJbta64l32W9aGr/KtUeWJWGZxTUPbdNs98fp9nG/jW53haZbtI+Htmmapj1EC4/7bbRwtV07qapL2DdkP5OVU7q6Cftpo9dHfOynPTvsJZfqf+LzyHCmpedw13XD2T4uMz6JlK0ndZgOXHVP9QYptWG+0Lhp43aVfaxWz0sppFl6/udLjFVdnh6Uu+yVE5fnRRm3a6Q0YpfFhVUOeb65U1rSeBIbbxprZectpHq25EtKu39og9e9Q5tmB+nQL93lQ9tst9v4Vfa438bLVty102pb5Hp9Ma7ZrdnOvsBXfe6Id33as8O4oWWbs5xayc3CMY2yQpfFcsvBzYtdZd8tR1Dcr/y8DR+on8P6XfphOuv5492cfrz0FUSfkR6S1xrliCr7oB/gasXEorzn6ImMZ5LekspN+5quJ5urEabWNhZlOdMsT4PxjykySNnBsF2zQ9ts9/s2fJE97rftfj+lh7V3bfh7rSMlVkA58+1rno++m9O5V6pVqc6f/Oyw3LX688h3poV5IR3Sc++OvcLVPV1wLCwHyPvAZO+MJbtOlfBRxl1u/Od/8odytojOfuVCrJblprFkV4XFjeYPF3dTLF9nbyLLavreuTZtaa5TNIWzUL+pVCapeV7+vPKhbdrDcb8NX/CqrVFt6kyfTg5BfDjut+3hOKSHs+zaGbrqUiPkG7KseYZ2jkou3ewK7Vaq6rIant74SgniXaXDod9UCgl3UGyW6VFjZpgv/7kOblM7aY37Wz3K1RawHLXqaWA/W+xrGulNqv9ROiilP0rNW7J81qT9+FVrWbpZKsRYyby2Shslf+s7a2RsIldLnm/NZftYLUr/23sEk7+lNY/7benNklzDRYaxjTk+HPfb9tAd99umPduurZ8e1pVXr7REefIqjdbVnqed2oDGJ+DidU4pRLxr9eeR/Uwb8sM2mzrk3x1l69V6Kge3dIYYKxk+sHpwS9U4ZU0j47FT7rL/UX2mJLRPbJbOV3GJvj29luI5Id60VFXZbnW/wg15m7Jaq2olq6tZWDZhL7/6qFUqaWkB8ahJx6ifz1i5bLFs7wJDepgGOYY/jvtkLsSqu2bqKozsR2rZMVX29xR6gWFN9Ja0lxmWfEqD6xtqsvNkQZvnhSgr1NunfM2iqz2JSvUUtxUu1Pex2ubedmsuKz2Ee7fgj+KZUHBSejAeoS47P5LqioUr+6ZXVS9K36+kVsoeWRibyNWS1V1YtkRs4QW7rD/QuDy/mbSG0krzmEDhda9RTzyzcQNzahhvetKDa9f0ap+wLwJ7aeKpZT+TLeXrkpo0wdNK/EOssL5EfGBpx/V9UcpX1l+2PGkc15nWdcLJnJRsPBvFv0srhBVTtms8u6qnnF5gWFtdXnl7JS017MzNmN9l/0MsVrE8PSRrNtkZIN4U97bUBMq+WVQrU/rb0pTeU6HaRN7VlBW8S/QTVK+eq26lxy7e5fSPOTTIr3zK8ydZrbab05aO++12fwiGID5l7EEvxLwXwlNJL824ZvXvxaqnUPWPMz079DPKUgHjy5Syiepq9jOt64rpwfIksrySKH9Xj5T3aVWiPKGUYu2HQ1/T9XJqPHan/GE5h0MrpIfqqV+t1lRCvjPhS1W1DsbqVf+2NKXlwCt1EIs1rqbswoIl4ubszwe9btWqGmtrWxh9YDO5pdRErEBtN+Oc0sihZb1di5bY1198sKo1N65pfA2pUl74lDXDV4/prjM9OyyvvOIRMTbXKs8j++nXdXJ6OEdtlYNrKfb0V5XquaSvby85v2l/hhr3vXr+6zVU9ihXTA/Gw2Y5zN3SI205SPpdSosnR85+BlvqE65jfCYYW7JajuUhypqlhcZ7u/isFVVLW/RsPO636ZfcTNdtq9s1Viwue7w0En4r1bHyic3FLzThEm/JitLREbduX7P6t4urwGrFzvfsyM8i44bEm+d4HhnPtEEWhe1PIvthEmsl/l06J/XC9eXTpquNrJzzxnZQKqDQm1Qp8JQnpvGpav3Epnhalyrt2qXq5vSF9vWNdQjPp2WVmVawNNHilhSXVJ8M4hMjr7Oygr7XuupzSVlubI1lNVmr2GoJi3dNfALqB/SUvbA/1nVCnl6T6imkbOXczw6XU55ii59Hn/YksjRm+Idlj/KnQP53vmnlyIqbLu1LqfKlWulrKrtZWievuViCflCMjzKeEml6UJ4YxrOh9NhSLasHQFzNtXX7yqVNn7I576P09lfu0ptI2UrpscnyZXsdFlWqgLJadf3F9Vlw1ymFr7hrlvVPaRnjiWRZ8/TGtG+u+gRxbau6Xe8zzliZanue8jz6kidRXmHxJaUpC9dUds140no3re+dcXOLC7Gf8MbzXz8HXGc1v9ANAAB8SA8AAMCH9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHxIDwAAwMf6K1nGJTrl60v15cu+S7X6KMt3vq5S8imr2Zt9wQFasZ7LnF7Ds7ZPuKb9C1yVQk55uKX80yvp3eInP3CxZc81/d5znGnelZXHnv6CpnyFc+lMO9Oefv4Jgyrhdy7Ev/Ob4hLdJ6SH0iYsxdo3fforkbGQfE37C5x4vJKn/Wemh2Xnj3edU9pnWl59lfS+pC7YaGlhvhfLKlmtqsXiNgz3xVhD15rGenpX07eybM0F1VAeYtlu3minbNG4fMHKpX2p7pe9AjiFlh662jEzPpmVh+cVEh+ernncb7PNjb+RbH0iVXcnWbO6p3pr2FczrqnUvLRmE7eMXqbeVsuUtqtsXa/Vuu1T3aJlzWVtlVe4tDD5+5SjtqCqekvaG9Oy6VMOxIIzTa/tumeaXpkFx6WTzplSBZI/7O1TraGxtUs1saxZWrm6Ala3PD14j1C+fnWJ8VzsDm0QHkynZl6mfcfFJcrmvO1WfSJVCymtmb9qKI/S6bugV6z65Lcs19dc1j6nbLG00NiS4rGwnJNKbRefaXbGdtafksY28a5Zqt4pLSZWfsGaSc3XepYZT+x866VCqltJlhuLKp0GljUtx3RZ68Grkh5Kd+knvXLiVssU79VOneN+G2aHRftirLC+p0prhGue8uS07JqyZlgH+zGqbs7L8vxfsOnT22daYjmOpa0saytxK0lR3nMyOdwLTkVjVfOWKVVe3HTpgeKhMa6pLFf22tgg1XOguqZe88XHpcvaWSw2OTFcW682teugWM5wY62SYpe1IVwWpodkieWFw1Js6dWzfEYe99umaQ/JY6svcNXnv/3pp9yr36zWzbIjrjWThfnNfJeV1ljMskfKytVyFrfPgp3NN2R/bLUcS+FK/fM/9OXLqiouL7WzuOnSERF3zbimUg1lr5XyFZYtJmvqNVdqqNQ8/6PUSsld+c3qVqqVKRWVN5e4gt6MYnsqN3Em66SH6t/64a+WU3qyzdnBVmHjVvJqW+ojPjnz87i0L9WdtR8a/ZlT2pDr0HuFTeEqbZW9XtY+Fq6SlceK5ZQW5udk9YQUt7vssJaey2Jplnqua/GZpqy/+pmWN5pyMrgYX6yUFU55HSjt0SlLjJsW64CzWn7lwkIvXH+56apPADU7KK9oef2VLSYLlX00nrLeJ7OlfOOayatD6VVj2cG1SDZkf4jlrlXW7IJKGve6dLyqm0tOnnxDSrWrB1GpWLXCOtdu6pu2n2n2NZPyz7FrSrHGNcVDcOJx6Qqdd/VUUU6hUrXF7Sb7Ujo0pQL17SqF5GtWV8MqiunB8jQwPtlKy/OblpeMcfV4qqS0IeXJUDpr9Wd1Us/SRtVq+9KDLq+SvmZYw+RRpYZSli+gN5G4IWXrq7dPUkljZfTWKz3QslHlZiOdRaX1jcuNFje4d9P26pWa13jEq1u0nz/GNcV2cDVOqfLKJpI/woMiHqPSJow1sTzKssthraoVUA4uVienB+XZmCzJ/xYfbl9NfzpNfyjZQX+KViuvr6CcyqXNKavpryzJo+yNrFfMWE99K9WNllZTyly3Agvap1pJV831FSwnj1JPpUsQ17Gcaa6DaFxu3E3jE8G1preqyvK8DsbSqrtvP830o6OUXD1VjLuj31Wq5ClnlFhJvUDjOYxVCOlBf6WznHPGp4TrmRPdLmeHUjVOqa3lCVl9iL45fQXxpVCptv6aJe7FKYdMKcFSPb3wxcUuaJ9OPXCuMvXH6oe4dIDyEvTz0Hum2Q9iSXUT4nL9dNUrrK/pOtOU5Xqxy56J3kZzPcXETSx+HdArlj/WfgZWy6z+jS9Un/dgeQJUX0pcTxJlo71Du2Sj4vltqVteJf3efHNKraqbLj0VjXvXxYcsXFM/1qV6epfn6xjPGUux67ZPl7VVtTKWFrOsmex+6QBZStN3oVSI8SHKOqUWqz43S6dBqZWMa4rrK2easmud+fwxruk9zarVUzZRumuqp/00sFRgWtNy+ikbsjeyd7tYi/YrWcoR0gvVD7y+XNzoshOi+lqgvJTkzzS95HBJ8vJhbI1kBeWByV3GNfOd1V9fdMruV/eruqal5NXbp5MOorLjpXYwHt/FCztzS1YPYqlZFtS/K7eeq5AF9cnXXHamlR5yjjNtWTUWPza8SzyTjYUYj5rxzKwW5d30spKxmJwe9GOg32V5SfK+rCw7IYy7kFc4fM4ny/VX4dJ+lcoUVzvlqbtgTXFHXOUbX1OUjXpZamWvv32dphDs8tXCNZftjl6HcEOlMqu72ZSfBcp+Ld6dpJAT1ymt6WqfZbtjqZh3zdLu2MtRWsze4EoFquWveFjFxy54FM6KX+gGAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+Unp4vrm72uwe3pLFr7ebu6vN3dXNq1zU20sjPAoAAFwYIT18PFzfXW0en+Ol7/e7qz49ZHd1XR8dyvcCAIDLkaaHcYBh/Nfcf3Rd1z09Xm3urq5fnvsMIQ4/jAFieAgAALhM+djD02OYAN7fPsZY0F+V6Ecm5AAxjk9w/QIAgAtWSg/Xu6vN3e3T68P17ioejZj/Xb+8pw/WsgUAALgIWXp4v99dbXa3N3166N7vd3IUeHrsV0g83zD7AQCAy5alh+ebu6vN48P9kB6GGQ/jv9v7l2aze3h6aeQBhnnaBLMfAAC4UOKsyXF25JQe5j/09BBFDYYfAAC4SJXPXOwe7u3pYZj0cPs0/fFpuwEAAD5N4bsm3xdcuRjWfHzu5k94ZtMqAQDAn86WHgxjD8OgxTTe0E+fZPYDAAAXZ6X0MHzUIhxsiL4lAgAAXAzbvIfKlYvwmkVg+PIorl8AAHBRvGMP/YWJtyA9jBMjpDmSfHkUAACX58T0oEWHXu2XOQEAwB/GmB5uHscfsBiHEza7h7d0pqRs/PUsPsAJAMBFKKQHAACAAtIDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8BHTw3G/bbb7Y7jo0KZLvI77bdMeuu7QNrn2MK+VbefQhmtUq7qK435b3OZUq2jDWQtNu3Jo+5LS/89Jasf5LuEIBIYHHvfbvprpEQsPVtMegjXlWowt42uQcG2tmkE9ZqXTNV9T26zlqPWtefbjWXFoowYBgHMT0kPeu7SH7BXc+3J5aE2PyV/d+yXaq76xaI/jfttst1J+ELve7f4ody79wkPbt+Bwf9rX9m0bLKp3cZlSD7vKQYu64mmXtvvjXNFCbz12xdOKpgaJH1vJFl0hPIj7Gi6XmmzaGUclwx0/+VBKEVQ8dvnyc+VoAJBk6WF4EYpexo77bd+BL3t1qr+P77ouezkf3tSGfYT2bnrF/DDFETGXjPUYWqjfdt4VtXspZ7SHLH9s2/+bIsh6u6O0lsehbbb7fRgV5PRQaavxhq1B9odwSdtqYw/pg4ezRlhzDgD9mbxPOuo5ptoqeRR2ejgNlhzK6QxKwojUvoW/zxCjAaAgTQ/Rm63hhezQjq9oS8bcp8cYOrSo/KxH3rZtoQTt2oa/usmrf7LJwujDYb9P2y3Yi2ivxruHNQ/tkDXGlRalh/rogzNNzMfiYHH7rssAAB29SURBVEkPXXc8HvVahNdBtAbp4hvq2EP0kEMrDFMFa0bjJOnb/OhxpkrmJ4fvUOa9fVxiXMPSQE+wCYYfAHwaad5DrSNa1E33L5Xla+7T6H8wbiwXk78+Htpmu13hhfO43+bvKsWRE2lA+dCmHepwNXo/vyM97tvtNsli2fWBM449VOc8BIdj6osq6WEsU9heuie2Bkn2IFyaNU2aHvLzYFgj2PPydIppxMlSSXl2kOVQjpvOWiwqUhrYCM6XbLlcJQA4i/pnLuJ+SBnfLWWCrvyqFmeEODcEr+7qnMqxcKljcVQymXcWv0RHYxvRtZ30Cs9cxlxCv0dDddrDOJQzPnRccdoBf3qwTXso5D5lc+E+6mMPhbSSTjQwNUjQmEE3Lh+4fOwh2ao0ayNfPjWDo5LChYLKoSxNYojqcEp64OIFgM/yCWMP2cXg6C7htXXsNMK3ntNrufiJDHXqnrGK2bw7aVS5bbdB59H/dTwcgvepc38zPSqf8BaNnGc7cPLYwzBbQWuMeCg+6jAL687VVtJDktjaNjskhgZJ3pvXxh6kczPohtMrMEILZEVbKimdbtqhtFxdOzk9rDwDCABKhPSQvCqeOP+u3O13cncljz2UiolfLpfnB6FmhZdhy5DG+CKfCEditlvhPew8srO8CxDe96ZX8eNWUy6cT+/H51EWy9hDNDUg6g1NDRIXctxv5fGHcSfFkYVoduvUHMkZJRTpqKSaHuRDOZZ+trEH0gOAT5KnB2vv6OJLD03TNG1rGHs4tE3+BnKV/OAYAi5GlnQORHxdRO4lDm0/wLGsC+iPXbyd/HAlXUwWJabHh/dkl3LE9HBoh4H77A36cb+Nd6zcIF1YYn/kszYOMkEhPaRrCsvFsQfjUVOvXEyPlQ9lPLYS7/Mpsya5cgHg06jzHsbBevE9oYslPcxv+2xjD+J0xrVeQCulqO+pxw71cDgGUSzf0WBIO7t+U9x2sWJD35a2dDQXY1gvm1aYvpedOvyojq2U1YL0sN3OF2+yd+iHttm2tgaJmjga+IgqaUsP8swDochhRetR02ZNxhtzHMqkyNKMhuJMB2ZNAvgshfQQvIkN3gMuHnpYduVCvOwdXhov1CPrMBfwpYfixuaBlGb6WEk4P2JclI5Eq2PbamI6jl/vGL65HbvD9iAciLzIKapNb8bl6a/pVf10c9MVgin+mRokaOLDvvwFpfn1CKndpqMT1VA4bOnO1CuZ99WuQ5nVU9yP0sUOaTnhAcCnSdND0u10J897kApRg0iYHvrL3dF0vLEvqdTJ8bpdfLz0cKkbE81dT9gIJ19oKY3DR9uw7fm8K3IVDuO3J2Q9ZDAPIZn2ELy3z+pUuENokPHbotp98KlNz9hDOsdBbqQi81H7XhcKvldtAFw29coFvptaeMDn+kbv9r9RVQD8BUgPwAn6cYyvjnTpZRkAODPSAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8NG+qbr6IXbTL/od99vwlx6F7wAMvhK5+LOW8Q8THIPvIBx/FCP6P32ssHn1ixa1b5/2Oirftuz/ogDtyy7z33PQFNtauMtSXvKwtAml39ewHkS/6AuqTd82mf7IRvi7ldLPh/6xpK9h9R0L83NqaMbCatP3ggc/qeY8W78AX60B9MT0UO8rot8+7jrlhwi66QU8/b3CNv+h50KnHX4PclDo+OsJcz2E/JG9Lsr3JtZLD2t/fXCxZtH+JS01/8xl/LKeGX+G2lBlc7c8/VRE6VvJ6wfRKfupymzTwi+DjZ1ldqZF5Snp4ZD+DvqwJF9f+CEW6cvXC6uZv0G98FQqHFvHsbA+p4LcXD4Ax+OhFFgr3xhu+cZ6TxvmCq3K13oCXfEXug3PjfGFpX8q7cu/OdTNv40wRwU5PRT6JPGFRMgqWurpf3dCUEoPUhnOTs02guNjH3vwp4ep8S2Rp7RO8Ktq4w+UtIe81u3eeBC9L9NClyL/VIU9PXTz2a7EyvG3tdJf5SyeYHrAmSouppiKUr9ajufGY3EIl1SeU1MjqumhVC8hp9kaTdq3JW2Ym7fPT4oA4q9k6f3w9MoQDRcUf7FwfuU4WNJD1x2PR/23qJLxjiSjJJc2vnDsIfzNpvXeqSwae8jqIaSH+KVZepHNf+qs2OPlJ81hvz8IpdgOopXytjLeTunKRTE9CNUT79q3UbtnP2oeV2i+pFfqioK+z55FS9mhdqXReixsz6n50fX0IBCPvq3RkrtdbVguN2pVhh+AwryH+ZmfjeFGv6XYhGFc7uan51klPYg/zzhtVerr5t967N/kttvp9SYae81f6aqvXetduRhejspxbEkHWctV4Q4GY8TF9BC8OZ9fPbNXWlt6mAuMq9Rf3442bD6I5paprD9dszaPPZgmfEwtF8zOmebqlA9wX+FatccizG93i9tUz3rPsbA8p8LxnsI52x6EE6WWuWuNNm4reqylDcUH5kWE+0d8wF9NTg/hm45jOF0x7lUP0Rut8tBw+Lqqjz2UXzLS68nTO5B5pKQ9jBOw4jdNTfi6WHzxr/QTQY9qEWQvww6tLooMQuMGS6cedapZOvgevIdL0oO0y+M+x53pdE94KpkPop0SrrLC5FDqHXuYlkSjcENbqelBmiqh7ZM5OxRWLDeo81gYnlNN02yn7BEmgvy07NIXEuGppo1WRXWqhQpxqKTevEKrcvECfzvpyoVFOtNBTQ/hKvPLqpIekk66baXXPWETc+HjS/f80lMbe9DemS3r7A/l695LCrQml/EtXXuQLkdMr+zT/XFF8iVTAjKMPQRpaTojjodD8I527pmmB6gHcZm02CTFiWf50B5aehDC4Lxm+Nix51wlPQjzNrQVteEFtRDLsTA+pw5texDeCZSeY4X0ULxElzZaFHLLO5fvvuGBpVatX3sBLps49hC+zBRGG6KurJU/lJW8sERvRi1jD8LkhakWeZqZ3+tvt01eyHG/ld8rhVdH10wP07u4M449FPuD436rXnQv76zyluqEeQ9yR20+iG5SmJXGHoLxkuDqWql9DvOkoKmwPD2Evc0KVy6CDVfULurrYw+OY2F7TvVr6adDOjhxwpWL2ghNsQ0rDyy1KukBfzspPYTP2+Mx+nxSsdfTxh7Cv7OBcTE9HNrhDXR2xSQYnEgujMw30uuTY78wBpi42udKD/HmVyswa00xC9Ve2s6YHqQSlYhjOohe2SZrg03jA7T0EO3w9KSI3pbPXW5wWchytaDSkpa2rmUH/aRwHQvbcyo99Y/77Xa7bbbbNmuQ8b3EdElTePhUGb3R4sER8aEy+YHlVuXKBf52UnowXL2IByDS69tderm9CV5M87fESXrYbucx7mwIZHhHfziEb2qiOJIsicZe/4j0oL8sRS/mto7Zdf866SE5dHLCsR9ERyXle+VFURepX3grxYD45Ba7rPTKUXtIK5R0UcFq2v5Gq4mDK0JlS2NRrmNhe04J44jHcX600EU305BUMT1ojZawXJKrP1BpVVODA5dMvHJRNj23D/FcO+Xld/wrvPAYP/WSeJFOeGymSyPhW5Pxda3/zPk0zWG+tB5e9DgE0wAK79ZrI+6flh4qKSbcYz091HxielAH7w0HUdg7bZy50ol3Yn+d9o/RW3GtJvb0MDZZ3vFF1Tb2fOFC+XiLgUPtcG3Hwvacms6BeXen7ccvAOGeFNNDpdGqFowVKK1KeABM6SF4gRCeMVpP1b836T+wmL1DCa6ZxhcuwkGNbDtDkhDuk9ZumqZp98EnzL507CFoSO1F3NCvK40+9k/rjT1YsshwvNRZ+FEtW+NBFM64QhMJiTao2TFecRoBiO7PDtBBmFYXN4f9xNBi1NlWS8gH3vqEmr8tyvCcOk6fWY3O2uIbe33I83t11Vy2APiVrO/mhBkRf4s/tImM1V53tVx9fgQqGHgAOtIDANgp17GAvwrpAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAICPlB6eb+6uNruHt2Tx6+3m7mpzd3XzqpT3fr+72txdXb+8r1hJAADwjQjp4ePh+u5q8/gcLx1iwUa4S1iN9AAAwMVK08M4wDD+a+4/uq7rnh77TPDch4Ng+OH5JlgtTw9vL00tcAAAgD9KPvbw9BilgbePMQH01zL6kYk5QJAeAAD4y5TSw/XuanN3+/T6cL27ikcj5n/XL++kBwAA/jpZeni/311tdrc3fXro3u938jTJp8d+BdIDAAB/mSw9PN/cXW0eH+6H9DDMeBj/3d6/NJvdw9NLM1686NND7R/pAQCAiyHOmhxnR07pYf4jSw8JPnMBAMClq3zmYvdwT3oAAAChwndNvhuvXAz3zhcm8vQwXNpQv2MKAAD8OWzpoTj2QHoAAOCvQ3oAAAA+tnkPXLkAAAAj79jDU9d147c4kB4AAPgbrZMeDP9IDwAAXAhjerh5HC5kvI2/cyH8hLeMsQcAAC5LIT0AAAAUkB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAj5gejvvtdn+Mlx3apmnaQ7GgQ9tkjxnKGh91aLf7Y3nNrjvut82kX6e8cnfcb5MKZSsf2ibQr5w/LC3hEFYjqY/Xoc1aLd+lo7jBwpaH+se7luxjWrS4T3IjHPdbYVenM+LQ9o9L/1dbwNd0YWuM2zAZKhKfvfL+AABOIqWHvH/tlyTL424hvhWu2t8zLTHlgWEl7aVfDA/FjnpcO+uoDR3Ncb9dGB6mGin5oD3k/V3x1rwjQrcdtMi8ve3+2HXH4zG/35Mepn05tE17mLcdZEOlDXLDFuRcEJTYV1xsUjnkFsNZrZoAAIc0PSSv50OHO70ch39b08NQ6PTetfy+MU0Pwsp9KWlnXMoFaXro15kqFtb50MoJYXnXE75fD0s+aewhDGF6ephaSjpgcsc7FpLdJVawjz3FmpZ313ZfQS09HNrpONdbEwCwjDD2EPVLWQe+bVuxU1TSwxwe5E5rWjlOD9usGxP7xLm/CHvTfo08fsxrRtcUpn0Wd35JeAg3nV1OKe1X9db8WGN6CPYzyUppJgli1niBKa1nv09R+4hxpHKpIVrR1JlX4tVcKNcpAOBT5OkhGJsuXdQujgwkHfW8bt+xSZ15l6QHrbRiesiTxpQe+o1L0yGEXUtrEl52WNQpRXlI2696xzhWRB30FzY25KW2DxHTPUnUCt/Qh5uIxmaa7X7fTlU67tttmFHEVJGJ7rPMaBgbKJ+1Mh/X4a/wQMkTTriAAQCryNJDnBuCl/fpdddyuTm7rj7eLV17D0NBeFU9G5MI70nGHjqlA4vWHnuYvhsUphQEl1nSHfT2PeoEzXg9w9jDcb9ttlN/nbeStjl1cmN06KJ37+M+z/veFzSFq2EirDoOpWzMM/aQH/lo+kU/MTSIkdIpSHgAgHWk6SH52MN+7h2mTDG8gCcdkjAWnl4CiN9FCukhXLlp2r2WHoR33Mn75r7Cw8BH019zEa4iRO/X1+xdws9vFIdq5AGQwrTF9iDcV8gMtcH+MAxG8xSjsf9o1oewpflckI5gwQnpIR1dCDPFvo1muqTVXTDHAgBQIH3moovezwfdzbL00L/nG1ZX00NyvSTqAId3vMrYQxfek6SHcBKA1Ise2qbZbisXUHzR4pAMbuRv/4/7bR+RDKIhej0ZCBd38lvZQQjvSw+kXiFphoq9jdQrN2kQCI7nYRooio5wMuYkz5AFAJyonB6apmna9uSxh+S6QtJRxNP5hPQgb6KcHrpooZQepF700G6Dz5TOyh9N8Cukh0O2ZN+/kRbDSlqh43673W6b7bY1fUwibflCpfLxmXkcaFgSz12Q5pzkH6HJdmBcoXotbLqmlE0F7R88zeTNr8LMEZbwAACrSdPD/OZ8tbGH6f5k7CG9q5gewjoJ8yCl9DA81Joe5Crb0oN6OX3qw8MvSZA2GIxUBMMnTVp02vlOoSerqXHsQaxxvs/HwyEc8UivSUXVjKJCFh/i2QripausnHgSqxAF5LEHIcOGhaf1BgCYVa9chKMCvTk9VISvzEqHFfUx7SF4YRc73Hlyvbylsf7T9fj9WFFx8sGp6aG0Y+EV+rFKUhu1bboH8Ubjbm66b56QEM0JSGeH2g5OWm95n+fxqGHH5vmlx/nDIOnlgjw+BOkoSBmiwhQGqdJiegj2Kbs8M18JKZcLAJAZ0sP86YTgnXSt3GSeWyNOV4w7ifztoNSrRG/Po7pm8yQOWcdsGHtQe135HbLt/avlysW4uNilHaevsZBnPc59f6UUqS7lYDHnhGj9bEl2xWVq7yRU9DsRTMe0XLnIdyQeGpsfpCbbYGCHsQcAWKaQHmBkDg8AAFwM0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwEdPD20uzubu6fnkfF7zf765uXsdbHw/Xd+nNzeNzaRNxac83d1eb3cNbstLr7ebuahMWmxeSPwoAAHw+S3rob27ubp+6ruu6p8erTZAAhpUfb6/vrjbBvykHRKXJUeP9fjc+UEohYwW0jAIAAD6JbexhSAzXL+9D9z8mifGu5v5jHD+YOviPh+u7q+uX97m0cYBh/Nfcf4SFP/cZQhx+GAPE8BAAAPBl0vQwhIPp3+399L4/+3f98j5cibi7fcozR54ewqjRdV33/vYxxoJ+JGPcuhQgxvEJrl8AAPC1pLGHoZ8Oxx66rstHHbpuHG/YPbyF4xPB+mJ6uN5dbe5un14frndyLhG23unZAgAAfBYpPfTDCab0EMyBCOYu9JcYXvP08H6/u9rsbm/69JBMxkyLjWNKUDFmPwAA8JXy9DBNUaynh+kyx+7hre/aH5/HoQsxPfTrPNwP6WEMH+FVkt3D00sjDzDM0yaY/QAAwNfJ0kM8hPD4nM2ECEYXXsbufPfw9nobDTDc3T4VZk2OsyOn9DD/oaeHKGow/AAAwFdJ00PwsYi+m0/mMaRjD7vm+u5qs3u4H7v2m9dxHmX1MxfDo2zpYdq6OP0CAAB8GjE9XO/ST2x2nTjv4fmpzwq725vdlBuiQYtk1mTXdfPghOfKxbDm43OXT88EAACfSfjE5th/mz5zkXx35Di6MH0zhCE9GMYehmKnTfcxhdkPAAB8hWzew/PTq/BtUV1nSw9hv75aehA+AxJ9SwQAAPhMle+aLE6ZnD77EKWHoVPvpzRa5z1UrlyE1ywChS+lAAAA52b8puquM4w9DCukFxTsYw9Pwfp9ehgnRkhzJPnyKAAAvsR66WG4vpD35W/plQhretCiQ6/2y5wAAGB9a6WH/hpE3IsHH8GIJiik6eFm+sLK8Oun0pmSsuT3PwEAwNmJ6QEAAKCI9AAAAHxIDwAAwIf0AAAAfEgPAADAh/QAAAB8SA8AAMCH9AAAAHzS9PDPP//8BwAA/nr//PMP6QEAADiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4nCM9/PvrR9M0P3+ft+YAAOBrrJ0efv9smh+/fv0kPQAAcKnWTQ///vrx8/d/fYYgPQAAcJnOM++B9AAAwOUiPQAAAB/SAwAA8CE9AAAAH9IDAADwWTk9/P7ZxMgQAABcGr5rEgAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgM/K6eHfXz/C38j68etfw+rpL2nNP7VVe7xYgqcOxU156gAAwN9l/fRg7W1//2yaH79+pb/l3S/+dyhM/ZHOQgn2Ovz+OT7y318/gpjgqAMAAH+fr0oP//768fP3f31HHXbOv3+Gb/bjTt1WgifBRA+atmSvAwAAf6OvG3voJX1/eHO8AlF5579OeghKWVAHAAD+Juec92Dpw/P08OPXv0Mpw18L0oOvDtGlikV1AADgb3LGz1xEXbK2UjL2EPb5S9KDtw7//voRrbSgDgAA/E3O+YlNtV+X10kmKVrmHOhbqdUhjQ7L6gAAwN/kfOnB9mmFrHcPRwss8UNdyfapjSwZuOsAAMDfZN304JhyMH+hwmDqooNC1G67UIK9DlkB/joAAPAX4rsmAQCAD+kBAAD4kB4AAIAP6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPj40gMAAMA/9vQAAACgIz0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAfMT28vTSbu6vrl/dxwfv97urmdbz18XB9l97cPD6XNhGX9nxzd7XZPbwlK73ebu6uNmGxgvf73VVcMQAA8Oks6aG/ubm7feq6ruueHq82QQIYVn68vb672gT/phwQlSZHjSEWbNQUQnoAAOBbsI09DInh+uV96P7HJDHe1dx/jOMHU/f/8XB9d3X98j6XNg4wjP+a+4+w8Oc+HATDD883wWp5ehhijRY4AADA2tL0MISD6d/t/TDwIPy7fnkfO/jbpzxz5OkhjBpd13Xvbx9jAuhHMsatjwGC9AAAwPcjjT0ULhBkow5dN4437B7ewvGJYH0xPVzvrjZ3t0+vD9c7OZfE0YT0AADAdyKlh77PNqWHYA5EMHeh7/Jf8/Twfr+72uxub/r0kEzGTIu9fSI9AADwDeXpYZwjaUgP02WO3cNb39M/Po99vJge+nUe7of0MIaP8CrJ7uHppRkvXgw5pvKP9AAAwGfK0kM8hPD4nM2ECEYXXsZZkLuHt9fbaIDh7vapMGtynB05pYf5jyw9yHXjMxcAAHylND0EH4vou/lkHkM69rBrru+uNruH+3EU4eZ1nEdZ/czF8CjSAwAAfxQxPVzv0k9sdp047+H5qc8Ku9ub3ZQbokGLZNZk13Xz4ETtysVw73xhIk8PwxbV75gCAACrEj6xOfbfps9cJN8dOY4uTN8MYUgPxbEH0gMAAN9RNu/h+elV+LaorrOlh/BTEqQHAAAuUuW7JotTJseJkx9Reog+Qmmd98CVCwAA/ijGb6ruOsPYw7DC9PUMpdKKYw9PwfqkBwAAvqn10kOxI39LP0PhTA+Gf6QHAAA+z1rpob8GEffiwUcwop/kTtPDzfSFldHXT1kw9gAAwKcT0wMAAEAR6QEAAPiQHgAAgA/pAQAA+JAeAACAD+kBAAD4kB4AAIAP6QEAAPik6eEfAACAf/75559/HOnhPwAA8NcjPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwWT09/P7ZDH78+ldfKq/qKddVAgAAWMXK6eH3z+bn7//++++///799WPs0n//nHr3f3/9aPo1xIVKsSeWAAAA1nK+KxdTfPj9MxwZGBaLC0tFnV4CAABYzfnSw++f/XDA+P9//w1jBE3T/PwpLSyNHZxeAgAAWM+50sN8WaEfIxg6+OGvnz+lhUp6OLEEAACwnrOkh39//ZjnMQ4zG6fLCmPfny/Uxh5OKwEAAKxn/fQQRYf/shmN/QSF39LC0qyF00sAAADrWTs9BB+EEJdNcxjEheEjwkX+EgAAwLmsmx7m718Y9V36OK2xSYcLsoVhOeFSbwkAAOBc+K5JAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4EN6AAAAPqQHAADgQ3oAAAA+pAcAAOBDegAAAD6kBwAA4ONIDwAAADrSAwAA8CE9AAAAH9IDAADwIT0AAAAf0gMAAPAhPQAAAB/SAwAA8CE9AAAAH9IDAADwIT0AAACf/wfpoIRuS/hsJgAAAABJRU5ErkJggg==" alt="" />

---------------------------

这种问题就是列方程,然后求解就可以了。

哥哥追上弟弟的时间:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANgAAACDCAIAAABgC0KOAAAMpElEQVR4nO2dLZyqTBuH70ChGNZAoRgsFsIaKBYDxWIhWCyGNVgsBouFsCdYLAaLxTLBYjHsBgvFYLEQPIFCIVAolHnDyCzrx7MfoIznva92do4u+/NyPuF/A0UQAYC8LwBBKEUREUFAEREhQBERIUARESFAEREhQBERIUARESFAEREhQBERIUARESFAEREhQBERIUARESFAEREhQBEfnlHHAJDH5D3vC0kFivjg+DsZAABU3cz7UlKBIj44wb6AIiI5EAXWoNfq9Lb7A/u3USkCQLP3ytrXi4lpmtNHG6lRxAdju5wAQ35arLeU0umwDQCz9Z5SOu6bcWvZz/tSfwSK+GAEf7dKQeIurmznsFmApBxCOre6EFOpt6O8L/VHoIiPh+86Y2toNuoAIBWU+WKmVuqTQZupaZrmdL4K877In4IiPjY7+01TZQAwWnzW+JCgiA/Jzn6bvI5M03ySwWy31bLe0MulyrNptueEuP7DdYgo4v2I1ksyHVu90eS8jS11B9b064ldFHQaOp8L9sfE360k5TkMfbOuxT+WR7Plzy8wWBJCyLzd7idEjlbziWmarU7PcU/XP87O7r+0TdNky6Y0oIg3Z/dGtLIKCSbLxMcWBd1mjTdNV7sv3m015f+5M5pRSsm4DyCt934UeHUt/kVF7Zu9YuQ7ZrNZ17nEUDE6rMl3nYZe5j9/KtcT7xlaXZM3gVTYuqm6YRTx5niHPSGELGb158pRko9PNOwmujcA+LPY/Pe7hb6jl1WQn0aTBfuJqasA0HtdUEpD3+21DAAwOqOfXqf10uC9LKXUd3ea+qSUKk2Df0+krUcp5b2y3DBN9Ymd7IA1T7VziSLek7BZLbGPjdgupXQ26qiV2u7guc5u0Ou89Ic/nt3FJyvPzV7Ki2P7kbxzrVWUZmcUUkppVFVYi+pGlNKob9aUUnV78BKvQhEfCpuM+ajqOxu1pB3SLSyivxv2hkq1mfLams8KAMiqHtKo26g2e3+ODeFBkQDiU8S51VXKuuMFrPG110x+tX4NinhfAqcoAQAoz4apa8R20r5h5FfVAgCY/XGqt/G2bIg1OqP1bKTV2/z7sV/P+JfHsYmiVPaxhZSGuioDgFSs+Ok20FHEe9OqHUfnjy4nHaHvEpJ2B/t9bh1H2OlcK2tOop/mx4Yr29ErpWXiy+PaBGJ90/1+FPHuzEadby6Q78mgVQMAkIotszFbJy8sqpVkNmT/GbTYOp3DJ4jp/xYU8d4cNgv24bWH07yvJSbyK0UJAKRCwWgNki3+fs0Otqu1eqVqBJ/G3+ONPyCr6bZuKEUR78/cemEilmqtvK/lCB9hQVZ2bpBsWrz2ji1yYbH5NKPljupmP/01oIh3xXfsUlkz2C6xpBzEOIrjs4XzaSuf0Z7bxl81Jnb6a0AR70lo6uUxsflHuNgIcZsC2xJnO4jJn0f+vni840xe773PL8pyXKYo4j1ZvPa0xgtNbIh0rTlv9Tzv+ktvSOTv2JZ4sWKc7MBsFq/sOvmhHyc8bJiiWqObyWWgiHdivyHFonqcgcW7ieV6m7UG7q5WN3MZqLltvT+Lk6a+eTx+/HQ4Tik9HnADAIxma0qp1W2e9KY/BUW8FVHg1ipqQSkt1lvHXqlPhcnyYy51HA2l4t6PAu9Q17XN6dh3J44bNyDbJ0NsvJSWFe18s7rbYDdJyFsvWk2HJ9s6vwBFvBXJ22QAoDX4dPcXnyaWNV1VlHnq26h+S6AVpYvjMt9munRmE2rF499Vq9UanVH6xxJQxFsRevvS8c4UqWuddhiBu2OtBaW03OxzuUJKqbddMp/OuzR+oHLpEDlqVo/rm85wksnDMSjiDQm8AyHk/H5Shu86hJAHvJma0uO54tU/7RegiIgQoIiIEKCIiBCgiIgQoIiIEKCIiBCgiIgQoIiIEKQSMfQPRrV85RQIQX5AKhH5LRgA0rsTfP0CBLnCd0V8W6/PjxT5U7ogK07KxwmR/2++JaJNxvzOuRPm46Fpmjke2yP/Bl+LyO4TYXkoCHIjvhIx9I1q6fxpBgTJlv8S0Xcdo1oCALlUwwkgclMui+i7jjXsx4FjUKk1CSGELD89X33MdVx02t3ThcqNIx95Xqppmmb7ZfWWweOMSL5cEJHHoJwgKc8hpb5jNxsNo/6R6scfFL9D5ONmOXuulApKqT+0CCGT1xH7tmSVI4PkxX8MzcfQk2sPrvJcRxYRebEpw8jHKPA6zRoAmN1PIYKTQYttIG09IaYPBCHEdX8cUXdVRB4oce3B1WG7zpQ6X8dkHvkYeAcWynu+eI+fQpJs92sRPzY+f8j3UzV+9/7/GIT8eI/lqognD66e8RESdd5dZhz5eFy5Q6Nrnf2q0KgoAKBoje/0h469Mn/FcDz/+t0ppSgiAGQrYhx6cva4K6U00V+ey5F55KPVbQCArFTc4FS2uDuU5++iRLzlPSoKQWZDMw89UZ4vB+Ly/vI8GC/byMe/2yXT+mxQjqbDDgCAVJiQt+//wYiYXBYxGfV88T8c+8tL65hsIx87RoW92z7RT+7sVV0rA0BZq28eudwSwrksYhxDAcvthRwM3l+eZ/NkG/nIX1IxOlHgEUKsYf+5UgIAvd6cr76oBIE8EJdE5KEnlxYiNDH4Dian5Y2yjXxMltuUn1TTNNsvfUKIdzZZRB6dCyLy0JNrCd1xSJS0OQuazDbyMU76ubZy/zF32L5BfscFEeMt4isJ3ZFfLgBciu2hWUc+NuKony/rMX2TO2zfIL/jXMQvkkD5Fsz54wGZRz7GWp9GaSXxXccaC5OKjvyWUxFD15aTWkRBwzCSR2p823n+7lBK17ORNT/unmQe+ch2EAFAKqi2c2HZRKaWqqqr9GVzkLw5FZHPoti+3WuvOZyuEu1RnQ3MkupG1LFXNcPkK4fMIx//2kSKZ2nyk/o6mbPfFfruYjbRtfKTWtnsU1XeQgThVETeP7V6I6vfPh1/4xKEAHKn13uuGYka1TeJfOQd8Dl18+URK2QjFzkV0bGJHA+H/T9nu9lx5TcAMFq95DbKzSIfw/GwV5A+KajXm8uNKGd6SCZcWDU7O5sQcq2zYeGT2+zOM74X+Riu4nNM7AT/STDpARECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIUERECFBERAhQREQIU8d7s7DdCyEvb3P69UOF6905M05ySC5Vm8iNaL8l0bPVGFzLZ1ouJaZoDa5oyOxVFvBPu7k3XysnglEvVso75QQDyapd/uNTujWhlNXnNn8LcoqDb5BWcrqRpfhsU8U6wZBVCSK9lHMOFVP2sF+EiXoiFvj/eYU8IIYtZ/bnCrqr4Ubsu7Db0pKMpw1RRxPsTR6FCYX82OG/XC9Zxfk4DzJ2wWS0lk7Rmo45aqe0OnuvsBr3OS3+YMpMIRcwBnrW32l2Knor+KuIVyE5WPPGdjVrSDpnGYaGIObCcDNiHOlvvz1ttMlarTeHqJgROXAPKMHWNZJ3SiyLmwHY5YSJeqMMaBfWK8p2Jv+86v6tP9mb/clXB60LcoigxipgDf+MI3fOw8bn1ojVevvMm9y/VwauQpFwgXwRFzIHQeWef6Em1BN+xFUU9KZR0jfv3iDyCuj3MvowDipgH/o7lQ9fbw8RPQ1MvZ1Xa6BbMrRcmYqnWyvzNUcRc8MsywOeqM2TcF7m+le/YpbJm6GUAAEk5qzmWFhQxH2olCQCKWoP9092tM98QyZTQ1MtjYvNp4mKTcVFYFDEfmlUFAECpRpRGgaeX1cXmwlaOICxee2wJxeuOda2PmnCed6EW009BEfPhWOZIKnmUDlq15OcqGvsNKRbjJVS8m1iut1lr4O5qdTN9T44i5sOwXQcAAHk47FcbXaG2r6PArVXUglJarLeOvVKfCpPlR9XYY4FEqbj3o8A71HVtc1rl8zegiPnAS8AqlZpo5ad3q2ly3/Fkj4lPE8uarirKfH1aXPF3oIj5wErNSQXFdsQ6U6aUht6+9MT2l6SudVpHLHB3rLWglJbZzWtRxHzYLP6AVFi8CVrIjdUXu1YOjO2lZ7vERxFzIewYVZH3ru8Pinh/olGncYtTsocGRbwz4aBlGO2hWMsTAUARb0vgHXqdljUllNLQd1tGVW90hT0/yREU8aZErVoZAEBWxuPXklLQGx3B9mpEAUW8KV4pUfK80R6ghddAEW/LuG8CgKbXZ8tUD7n986CIiBCgiIgQoIiIEKCIiBCgiIgQoIiIEPwPgFDDXlPjnNoAAAAASUVORK5CYII=" alt="" />

(弟弟先跑的路程/哥哥比弟弟快出来的速度)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAN0AAAArCAIAAABzbRpJAAAK8ElEQVR4nO2bLZiyThfGT6BQCGygUAgUimENFouBYrFMsFgIa7BYDBYLwQ0Wi8FCMfwnWCwEN1goBIuF4AYKhWChUOYNA7N8uR8+z7P6Xhe/tjsyjHDPOWfuGYHU1DwecO8B1NRUUOuy5hGpdVnziNS6rHlEal3WPCK1LmsekVqXNY9IrcvHYmboAPwCv917IHem1uUjER55AACQW+jeQ7kztS4fictJ+C1dRuFZb6oAgMaLf32vG6h1eVfiizkZ9Y2RezrTv3XtCQB6ozlttzdLhNDqH6R1vBhDAvfmXf56/39Irct74m6XiTZ4cWO7hJDVdAAAa/tECFmMUdqqhn9wl71tx6V/OniRdi55Ybn9ztS6vCeXd1cSOCbNneOdDxvgpHNELHOYxjPQOoObhePghdoZVDZZiylCaHs43Tz+f0etyzsT+t7CnKJuBwA4QbI2a1nrLCcDqlSE0MraRbd2fvGPisiPF/hvjvhXqHX5QBydfUPmAUDvs4rzD4hCvakAcPbpT6qA+1Dr8v4cnf1yPkMIiTygwUBWW92WqmjPCA0sjP3wlnAZ+p7eVACAV9oPVzx+g2/p8uQeZpMRQqhvjJyjR//pHmxrtcD7Y/6zsb3FGOOXwcDPP8/9dt1HCKHB4UokiC/BejlHCCGEZvNlcIkJIf7xbb7e/vhr/Qr7Hf6crX34oov4YnRbrI4cL3B43HHScxSFqNNI/83PfvIEQt8zp2ORT2vTdo+O5ZKVZ3zZYozxxhgMi2uepMkaDMaZFxjvrCUVgOcXo693dMYvA4QQXbp9DpuECCE0eNntncqPfaFL33N77Qbw4st4ijFeLUxZkraONzN0ajEkOSIOh0jXVJU94idNjz86cdqawpo4QS4vAD1np0gCL8qz+RJjPJ9NJEHoIiSL/Gxtf/ltf5/Id3j4gtHr5vNOjrsV+7AxW5PEvuHsUxhfgk5DTp9m45sx880yK0fCSc8RIaHn9LpdvfMxE5R2n14Yhx7q9TotNhlA0w3aFPpet/XxZkW1kxlMZA5R5jaC618d6WG7ftYUQVLGUxNjvJzP6OTpjV7LH/5Ml9u1KXCgNPXsFPH2ltpBzxJXmSM2ryM6QubWHvdYEjhelGmeoiy3uYkVX95VkQfgsPMRSoPTga5V7dPDuWsk5/9V058sv+wkCr2WKgMvzpaJglFLBoDRfEMIiUJ/1NcBQDdmPxxd3FZ4AABertSJ+dJNZs68OHNYE10thf6xIYuSovX0NlOfG9Cb0GDP0/BB20yrwmqNL4HRawMAGk6zVcly0gcAAN4NinHqqi7XMwMA1Fa3VN5cNCEZYHdoFto280SX1IE7u7YkcGw0r6NepS6TWc4pQb63xRiBoH7fXPvw5H5IC42/e4+EWNee+qNZRe0XhajTKD+Zb5Hu9zz3RrdcnhKebGo+NbrDyg9MBx2qsPKSiBqoLGa3NalnzCJCCImbEm2R/ZgQEo9RW1Ka7jnIXFWhy0twpoG/bAtQjQFwjv89XdJgIMiNc1XR3UrTS0FehJBhtwEAwCtBTC7BSZOE7GhGvWc6jsM51y0b3+6YU+bJXrNE8x08Z4duYrqwvn8XQkh4sluV0okvRrfV6U9uW2rE7wf6YKVm76YOElgsv1ICJdGUl1vlt9t7ltKmeNhtfiTZ6CxxAOkeqWUOJbXlBUkqm6cRBzt+rrvEE6gIYYREuiYBgNTolh9XhS6PbxYPAMCt7WO5lZCo8URV9FTcvop8mU+naXzptdRcgRWHqgCQLz0prCpSmnp2IkT+8TEXPcH5VC7/CYnGqNPqGpebF8Bx2JQF+OM9636bVvO8U5XFWTQtayUOXJqPdWNmr2eNzoBdf7LX9B0Zs7XnYEnSTgF7/VFL5gGAe9IKyc0cdgGAlzS/9FDSYMRbbxUyK+kyChqy8Elqi8MjzTXlXQQ29MlyOx/12v1JZSst8HN9Xt6VdNujqRs328h3JZ4Z3UYH3eTqfBCFPsa3G+mEkDg8PXEAANJzddBl0XS1KwqCBQhzZTXUhpf5MmxTdOd4LU3ZOh5r8h0MqZqzvb27W6ryUgaPV1MDAIATlnhfOciiLpmK7VNQeQGr4colczp0zpybktoK8lMkXcLD1q3oObuQ/HmZf3+Wk77S1IPbQ+Vfg72g8vynJNG0akk06bdpJuyjbj5bfqT+10m/0DMrLgtCN3SN9nbKRNGjs+s0VABQG51rjiEp6JLFrUb35doFY5S4DLtjIZElZ2FAkBRRxJn5RAghcag9cddqGgoTLgBMV7trA3hALHMoae3bDPC/TqKtK/OfRVNmA2Xb6DviBEHP5zqW+pvtjtbU87Mvfe95obNLNN2ILwHG2JyOnzUFAFqdnrX7wtnN6XK7nNCvtMDVbufl3aH5lvphWaLzIT2AUFEesST+WeUUX1BbS7rgRcf7/9g92y4notL0gscws76a/ywvTZbFwp2lY+Clo5/7Osxm4Xlhc8hFHKa/QuGXPXdCXcLByxhj/M2UktPloEPtU+F4xZthc7GcanerKW0S5Ea5yGWxsLheyxOFZ1rdAkChPP0Ov+gTJdiW+SRpx4o10H04HzbXXhAlTXdFS4R8lHAVRne6kKp4UOyqQixLnJmrnsAXZHUZqnQdLrcqVelslywilgNq6gFVjePKJH537fW2GM89BycWbeKT/YBf84koh+1SFOXDlUL8LqROdcWahpDPLBGSWvplU5Ol/qpVR3USJ4R0E9cGXjdfbcZWkdFl4NK7Vx7iD04HRVE15QmgWMkSQkgcpPsLzXKcvpbE8WJcmdZHvSb9/Kex9c64tvX0JNluReV+OmxLxwZ+h6sqoXxSTTGbpSzZw2ZOryqXpKx4Kxv4qco/2/cKfc9crCqbMrr0nSROlWpH/7hXVdU+7KWMAfG2+49V+t6bRa+tXAMyiwE7PiHxcNCn10367cojq8lm5s/j5a9xOmxFUaw+URtf9IZaaRz+a9iWfaKS+NLVc34wc7+tN48QYq9nppXYNEx85T19ttItb6MUDHxz2GOxljqXAMAJsuNVpBS8MmVZ3hXWxykZXaYxD3JFcWwtZrIs2+45O9ui0NP1PvvKLH1UrQHjDk0eghrGxDJHC5wEdl0TgBMOpfUN3aJ9WLeIbq52B+OqI0SW/qzd69eMrLymfuF81MvbGumL4GQ/Jp6za+uIJbd05VCy4lkNJjXKi460iOTdIN6tptmo9O5gVvXxojxfWvReUehv1stWQxVl7XC6mhBz6x62Zw8Az20dISSLvNLoHM8ByazW9f7I6CP3zPSUpI9yoCXkY88XeHH8MhiaaSUX+zKNvmqL9k9xbUvgQG50HsELLBOcDuyMwjXudT6cRa/+aGaOB8VkzV4E8MZo9NzWM8bWpfHEQVUSZwupqoor3fkDaLfbXWNWuJaF5zId9PK5rZb31aNwkDkOyIvy1Fyxq9mPpBSt7WaUxNJHdYSLA5V6S7z4mtlUDNytpLY2GE9GhshDq9NFCNFzVj1j8iBeYImwKQmlh1ygevfvF8gsGYXxa6mgSjc5AUDvj7LTPnC39P/lMixfgxV77DWTpZIxXVZFkWgxHbHfL1Fand728HXxXbE/fnIPGOPKA5vOfvf1WdcSwflUNq5C3ztlxH2gx4kLx1drfoh3dPD1I+6X4Iwx/gu/0EiJQh9jXHVUIPcpdn76+9Gm/h1FzSNS67LmEal1WfOI1LqseURqXdY8IrUuax6RWpc1j0ity5pH5H8PYTudJudC3AAAAABJRU5ErkJggg==" alt="" />

(哥哥追上弟弟的时间*狗的速度)

AC代码:

 import java.util.Scanner;

 public class Main {

     public static void main(String[] args) {

         Scanner sc=new Scanner(System.in);

         int times=sc.nextInt();
while(times-->0){
int m=sc.nextInt();
int x=sc.nextInt();
int y=sc.nextInt();
int z=sc.nextInt(); double ans=(x*m)*1.0/(y-x)*z;
System.out.printf("%.2f\n",ans);
} } }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=97

NYOJ题目97兄弟郊游问题的更多相关文章

  1. nyoj 97 兄弟郊游问题

    点击打开链接 兄弟郊游问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 兄弟俩骑车郊游,弟弟先出发,每分钟X米,M分钟后,哥哥带一条狗出发.以每分钟Y米的速度去追弟弟 ...

  2. ACM 兄弟郊游问题

    兄弟郊游问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 兄弟俩骑车郊游,弟弟先出发,每分钟X米,M分钟后,哥哥带一条狗出发.以每分钟Y米的速度去追弟弟,而狗则以 ...

  3. NYOJ题目62笨小熊

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAr4AAAK1CAIAAAChInrhAAAgAElEQVR4nO3dO3LjutaG4X8Szj0Qxx

  4. NYOJ题目457大小写互换

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsUAAAIUCAIAAAB9y8bFAAAgAElEQVR4nO3dPW7bTNsG0G8T7r0Qt/

  5. nyoj 题目2 括号配对问题

    描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对.   输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...

  6. NYOJ题目27水池数目

    --------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...

  7. NYOJ题目20吝啬的国度

    -----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...

  8. NYOJ题目28大数阶乘

    -------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...

  9. NYOJ题目198数数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF

随机推荐

  1. mongodb安装 window

    安装MongoDB 1.按照操作系统下载http://www.mongodb.org/downloads. 2.在D盘新建MongoDB文件夹(此文件夹为自定义的数据库安装目录D:\MongoDB)把 ...

  2. iOS开发——UI基础-Xcode资源拷贝

    #1.拷贝资源的时候选择的copy的含义: 是否要将资源拷贝一份到项目中, 如果不勾选就代表着不拷贝, 那么原来的资源不见了, 项目中的也不能用了 注意: 1.虽然项目中的图片和外部的图片是同一张图片 ...

  3. 为 Github 创造 Integration

    导读 现在你可以从我们的 集成件目录里面找到更多工具.这个目录目前有超过 15 个分类 — 从 API 管理 到 应用监控, Github 的集成件可以支持您的开发周期的每一个阶段. 我们邀请了具有不 ...

  4. [BZOJ4016][FJOI2014]最短路径树问题

    [BZOJ4016][FJOI2014]最短路径树问题 试题描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长 ...

  5. Attempt to present <vc> on <vc> which is already presenting <vc>/(null)

    在给 tableViewCell 添加长按手势弹出一个 popViewController 的时候,遇到的这个变态问题: Warning: Attempt to present <UINavig ...

  6. LAMP环境的安装

    感觉一下子喜欢上了ubuntu.界面特别舒服.打算物理机装ubuntu了都. 00x1 LINUX linux我安装过了就不演示了,百度经验的一篇文章:http://jingyan.baidu.com ...

  7. 如何学习caffe

    知乎上的讨论:https://www.zhihu.com/question/27982282 从0开始山寨caffe系列:http://www.cnblogs.com/neopenx/archive/ ...

  8. ZJOI2014 2048

    Description 提交答案题,写个2048 AI 告诉你随机数生成方式. Sol xjblg+A*. 首先我写了个模拟,2048. 然后自己YY就可以啦...各种乱搞... 因为随机数,一个最好 ...

  9. BZOJ 2466: [中山市选2009]树

    Sol 树形DP. 听说有非常神奇的高斯消元的做法...orz... 然而我只会 \(O(n)\) 的树形DP. 首先一个点的状态只于他的父节点和子树有关,跟他 子树的子树 和 父亲的父亲 都没有任何 ...

  10. 全部springxml文件约束 applicationContext.xml

    <?xml version="1.0" encoding="utf-8"?> <beans xmlns="http://www.sp ...