题意

求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $。

链接

题解

欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数。

gcd(i,n)必定是n的一个约数。

若p是n的约数,那么gcd(i,n)==p的有$φ(n/p)$个数,因为要使gcd(i,n)==p,i/p和n/p必须是互质的。

那么就是求i/p和n/p互质的i在[1,n]里有几个,就等价于 1/p,2/p,...,n/p 里面有几个和n/p互质,即φ(n/p)。

求和的话,约数为p的有φ(n/p),所以就是p*φ(n/p),同时把约数为n/p的加上去,i*i==n特判一下。

#include<cstdio>
#include<cmath>
#define ll long long
ll n,ans,i;
ll euler(int x)
{
int res=x;
for(int i=; i<=sqrt(x); i++)
if(x%i==)
{
res=res/i*(i-);
while(x%i==)x/=i;
}
if(x>)res=res/x*(x-);
return res;
}
int main()
{
while(~scanf("%lld",&n))
{
ans=;
for(i=; i<sqrt(n); i++)if(n%i==)
ans+=i*euler(n/i)+n/i*euler(i);
if(i*i==n)ans+=i*euler(i);
printf("%lld\n",ans);
}
}

另外一种做法是:

素数a有$φ(a^b)=a^b-a^(b-1)=(a-1)*a^b$。

且有 $\sum_{i=1}^n gcd(i,a^b)$

$=φ(a^b)+a*φ(a^(b-1))+...+(a^b)*φ(1)$

$=b*(a-1)*(a^(b-1))+a^b$。

由$n=p_1^{k_1}+p_2^{k_2}+...+p_s^{k_s}$,

可得$\sum_{i=1}^n gcd(i,n)$

$=\sum_{i=1}^n gcd(i,p_1^{k_1})*\sum_{i=1}^n gcd(i,p_2^{k_2})*...*\sum_{i=1}^n gcd(i,p_s^{k_s})$

(我觉得这个理解起来不容易)。

#include<cstdio>
long long n,i,k,pk,ans;
int main ()
{
while(scanf("%lld",&n)!=EOF)
{
ans=;
for(i=;i*i<=n;++i)
{
k=,pk=;
while(n%i==)
{
n=n/i;
k++;
pk*=i;
}
ans*=k*(pk-pk/i)+pk;//φ[p^k]=k×(p^k-p^(k-1))+p^k
}
if(n>)ans*=*n-;
printf("%lld\n",ans);
}
return ;
}

【POJ 2480】Longge's problem(欧拉函数)的更多相关文章

  1. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  2. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  3. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  4. poj 2480 Longge's problem 积性函数

    思路:首先给出几个结论: 1.gcd(a,b)是积性函数: 2.积性函数的和仍然是积性函数: 3.phi(a^b)=a^b-a^(b-1); 记 f(n)=∑gcd(i,n),n=p1^e1*p2^e ...

  5. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

  6. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  7. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. POJ 2478 Farey Sequence(欧拉函数前n项和)

    A - Farey Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  10. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

随机推荐

  1. Eclipse启动时选择workspace设置

    由于一直习惯eclipse中只使用一个工作空间,所以一般在eclipse刚刚安装好后第一次启动时,我就钩上了弹出的工作空间选择的对话框中以后不再提示的钩选. 结果这次突然需要用到它的工作空间提示功能了 ...

  2. 加载cocos studio场景

    今天尝试加载cocos studio的场景. 新版的cocos studio中,"导出"选项变成了"发布".发布之后会生成一个res文件夹,其中每个场景有一个. ...

  3. 让IE10等支持classList2.0(转)

    chrome24+, firesfox26+起支持classList2.0,即让它同时添加或删除多个类名, toggle方法支持第2个参数,用于强制添加或删除 var div = document.c ...

  4. css3动画中的steps值详解

    css3的动画的animation-timing-function属性定义了动画的速度曲线,一般的速度曲线大家都知道,什么ease,linear,ease-in,ease-out,还有自定义贝塞尔曲线 ...

  5. Twitter Snowflake 的Java实现

    在关闭显示的情况下, 可以达到每毫秒3万个的生成速度 /** * An Implementation of Twitter Snowflake ID Generator */ public class ...

  6. Codevs1026 逃跑的拉尔夫

    题目描述 Description 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移动 ...

  7. spring mvc4的日期/数字格式化、枚举转换

    日期.数字格式化显示,是web开发中的常见需求,spring mvc采用XXXFormatter来处理,先看一个最基本的单元测试: package com.cnblogs.yjmyzz.test; i ...

  8. [JAVA教程] 2016年最新spring4框架搭建视频教程 【尚学堂】

    Spring4框架 主讲:邹波 类型:SSH 适合对象:学习完javase.数据库技术.jdbc者 Spring4.0作为一个广泛使用的开源框架,它由Rod Johnson创建.它是为了解决企业应用开 ...

  9. JS运动从入门到兴奋1

    hello,我是沐晴,一个充满了才华,却靠了照骗走江湖的前端妹子.在这个充满PS的年代,这你们都信,哈哈,废话不多说,今天要分享的是关注JS运动的知识.楼主一直认为,不管学习什么,核心思想才是王道,掌 ...

  10. unity3d 扩展NGUI Tweener —— TweenTime

    这是今天做的一个小功能 策划想要一个时间滚动效果 那就搞呗!思路和之前写的tweenFillAmount一样 传送门:http://www.cnblogs.com/shenggege/p/479892 ...