免费道路 bzoj 3624
免费道路
【输入样例】
5 7 2
1 3 0
4 5 1
3 2 0
5 3 1
4 3 0
1 2 1
4 2 1
【输出样例】
3 2 0
4 3 0
5 3 1
1 2 1
题解:
题意即为求一棵刚好拥有k条鹅卵石路的生成树
那么我们先将所有水泥路加入图中
就可以知道必须要加入的鹅卵石路
将这些边加入新树中
接下来再随意地按树的结构加入至k条鹅卵石路
并再更加随意按树结构加水泥路至连通
那么就得到了合法方案
判断过程中无解的情况:
1.所有边加入都无法连通
2.鹅卵石路不足k条
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int me = ;
struct shape
{
int x, y, z;
};
shape a[me], ans[me];
int tot, num, cnt;
int n, m, k;
int fat[me];
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
int Find(int x)
{
return (fat[x] != x) ? fat[x] = Find(fat[x]) : x;
}
int main()
{
n = Get(), m = Get(), k = Get();
for(int i = ; i <= n; ++i) fat[i] = i;
for(int i = ; i <= m; ++i)
{
a[i].x = Get(), a[i].y = Get(), a[i].z = Get();
if(a[i].z)
{
int u = Find(a[i].x);
int v = Find(a[i].y);
if(u != v) fat[u] = v, ++cnt;
}
}
for(int i = ; i <= m; ++i)
if(!a[i].z)
{
int u = Find(a[i].x);
int v = Find(a[i].y);
if(u != v)
{
fat[u] = v;
ans[++tot] = a[i];
}
}
if(cnt + tot != n - )
{
printf("no solution\n");
return ;
}
for(int i = ; i <= n; ++i) fat[i] = i;
for(int i = ; i <= tot; ++i)
{
int u = Find(ans[i].x);
int v = Find(ans[i].y);
if(u != v) fat[u] = v;
}
num = tot;
if(num != k)
for(int i = ; i <= m; ++i)
if(!a[i].z)
{
int u = Find(a[i].x);
int v = Find(a[i].y);
if(u != v)
{
++num;
fat[u] = v;
ans[++tot] = a[i];
if(num == k) break;
}
}
if(num != k)
{
printf("no solution\n");
return ;
}
for(int i = ; i <= m; ++i)
if(a[i].z)
{
int u = Find(a[i].x);
int v = Find(a[i].y);
if(u != v)
{
fat[u] = v;
ans[++tot] = a[i];
if(tot == n - ) break;
}
}for(int i = ; i <= tot; ++i)
printf("%d %d %d\n", ans[i].x, ans[i].y, ans[i].z);
}
免费道路 bzoj 3624的更多相关文章
- [APIO2008]免费道路
[APIO2008]免费道路 BZOJ luogu 先把必须连的鹅卵石路连上,大于k条no solution 什么样的鹅卵石路(u,v)必须连?所有水泥路都连上仍然不能使u,v连通的必须连 补全到k条 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- bzoj 3624: [Apio2008]免费道路 生成树的构造
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 111 Solved: 4 ...
- BZOJ 3624: [Apio2008]免费道路
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1201 Solved: ...
- [Apio2008]免费道路[Kruscal]
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1292 Solved: ...
- P3623 [APIO2008]免费道路
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special Judge Submit: 2143 Solved: 88 ...
- 【bzoj3624】【apio2008】免费道路
2016/06/25 诸老师讲的图论,听了这道题很想写一下,但是看来要留到期末考后了. 07/01 有的标记是说生成树,有的是并查集...然而我只是觉得这棵奇怪的生成树蛮精妙的... 题目比较难过的只 ...
- [BZOJ3624][Apio2008]免费道路
[BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...
- 题解 Luogu P3623 [APIO2008]免费道路
[APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...
随机推荐
- C#与C++的发展历程第三 - C#5.0异步编程巅峰
系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 3. C#与C++的发展历程第三 - C#5.0异步编程的巅峰 C#5.0 ...
- 水印第三版 ~ 变态水印(这次用Magick.NET来实现,附需求分析和源码)
技能 汇总:http://www.cnblogs.com/dunitian/p/4822808.html#skill 以前的水印,只是简单走起,用的是原生态的方法.现在各种变态水印,于是就不再用原生态 ...
- C# Excel导入、导出【源码下载】
本篇主要介绍C#的Excel导入.导出. 目录 1. 介绍:描述第三方类库NPOI以及Excel结构 2. Excel导入:介绍C#如何调用NPOI进行Excel导入,包含:流程图.NOPI以及C#代 ...
- MySQL数据库和InnoDB存储引擎文件
参数文件 当MySQL示例启动时,数据库会先去读一个配置参数文件,用来寻找数据库的各种文件所在位置以及指定某些初始化参数,这些参数通常定义了某种内存结构有多大等.在默认情况下,MySQL实例会按照一定 ...
- Postman接口调试神器-Chrome浏览器插件
首先大家可以去这个地址下载 Postman_v4.1.3 这个版本,我用的就是这个版本 http://chromecj.com/web-development/2014-09/60/download. ...
- JavaScript学习笔记(三)——this、原型、javascript面向对象
一.this 在JavaScript中this表示:谁调用它,this就是谁. JavaScript是由对象组成的,一切皆为对象,万物皆为对象.this是一个动态的对象,根据调用的对象不同而发生变化, ...
- Android Fragment 剖析
1.Fragment如何产生?2.什么是Fragment Android运行在各种各样的设备中,有小屏幕的手机,超大屏的平板甚至电视.针对屏幕尺寸的差距,很多情况下,都是先针对手机开发一套App,然后 ...
- Maven仓库搭建和配置
maven在本地搭建仓库的实际需求maven在项目构建过程需要下载一些必要的软件包,这些默认的下载链接都是访问maven的远程中央仓库Central Repo.如果项目中的成员,每次第一次构建的时候都 ...
- 鱼眼模式(Fisheye projection)的软件实现
简单实现 鱼眼模式(Fisheye)和普通的透视投影(Perspective projection),一个很大的区别就是鱼眼的投影算法是非线性的(non-linear),实际照相机的情况是在镜头外面包 ...
- Android快乐贪吃蛇游戏实战项目开发教程-04虚拟方向键(三)三角形按钮效果
该系列教程概述与目录:http://www.cnblogs.com/chengyujia/p/5787111.html 一.知识点讲解 当我们点击系统自带的按钮时,按钮的外观会发生变化.上篇博文中我们 ...