信息素的局部更新策略  

每只蚂蚁在构造出一条从起点到终点的路径后,蚁群算法还要求根据路径的总长度来更新这条路径所包含的每条边上信息素的浓度(在旅行商问题中每座城市是图中的一个节点,城市两两间有一条边相连)。下面给出了蚁群算法更新信息素的公式:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAjIAAADQCAIAAACSvRyuAAAZzklEQVR4nO3dPbazNriG4TOBj4llAEyDLgNgBgwgiwHQ07p2SUuTtejoGAGneM5+jyKBwAbbwvu+iqxkxxYyP3r1z//MAAAk438+nQEAAP4fYQkAkBDCEgAgIYQlAEBCCEsAgIQQlgAACSEsAQASQlgCACSEsAQASAhhCQCQEMISACAhhCUAQEIISwCAhBCWAAAJISwBABJCWAIAJISwBABICGEJAJAQwhIAICGEJQBAQghLAICEEJYAAAkhLAEAEkJYAgAkhLAEAEgIYQkAkBDCEgAgIYQlAEBCCEsAgIQQlgAACSEsAQASQlgCACSEsAQASAhhCQCQEMISACAhhCUAQEIISwCAhBCWAAAJISwBABJCWAIAJISwBABICGEJAJAQwhIAICGEJQBAQghLAICEEJbeYRzHuq6zLBuG4dN5AYCkEZZea5qmtm2zLCvLchzHT2cnpmmaLMuyLPt0RgD8aoSlF5qmqSiKLMtut9un87ILYQnAxxGWXsVi0v1+f9sR8zw/0ibLsqxpmhOzhAsZhqEoipf2M9d1/bbHAddFWHqVqqr2l/J939d1nee52it5njdNM03TQ0dsmqZtW++P0zTdbjdlRqqq6vte/6uqKvtk13VZlul/fYqyVJYlhdebDcOQ5/mrxz7Hccyy7NEb+7sVRVGWZaSjQtUF+8xvOHuEpZcYhmHnPTSOo264tm2toaMI8dAUiXEc8zx3/2LDWnme3243JW5/tH/a5xW6lPmyLIui2P97H6XiyQ2KUte15obQl3iurusi95Ju167r3D+uXaM91FWweAsVRUGdw6Pnva7ryGc09FuW5dty9aj4PfYQwtJLqNDffKRVHBRFEUav/YFNyrJ0ixVVfteGtZS9LMvcHj87nNorLw0Mfd+Hz9g0TRYv6Us8ke6ltVJPISQ84YvX6KEjLn5XNY8n0vxit9tts7dftcawOyQR8XvsUYSll7AGUOQzkZgk+2/Evu/dIsBC2lrlRRVhr9RQZlQ8tW376mkaYd5UDn62F/ErxUu9tm3zPF+8CY9Ufte+27btSxviV6QnPV4B1ROd7NOxJ7LuR1h6Cd1DXq+ISy2DeDed2g17nmF3VMBSjscV7wPWbfjBW1+/N/Fp9FekUm/xxKqC8s5eNV3ltx3uEvI8j/esWEXzbVl6VOQeewJh6XwWGCIXSSMo8TavdbXFD9e2rdsDo/tjs+/FG9+2gSXVeuZ5fn9wsjzgXBpfXPxfmmjzzswQljx7agb3+/3pcb73iNxjTyAsnU+dUZFnTzfi5oyGPWFJk8Kt+W+1qs36r9c3aJFMzaZ5nl80uHq/3zWfwnJocxxM/NDDMNR1rblJRVGETVJNa6yqSp/xPtA0TVEUVVUNwzAMQ1VV+qT1XpZlqdqre3U05KaPadqIjr7YxbonA23bTtNU17XS8Q7nJmXplGXp1hU201ENw+Mmrvsw/AnhNdpPJ6eqqjzPF7+uoftICl3X6RLY18dxrKpKp1F3uFdAK8NlWWoCethPoNMo4RUJj+799qZpvBpkPMHIVbMM2w2sExLvwbNarN2u3lVbzPb9ft+MZPFTd/weew5h6Xy6VJGyVR/Y7J1T6yFeB6nr2r2TbKeGR2eRul2OyvwrWks2BhZOqdg570s/0J7JsIGlB9jOiaqZ9tP0oKreoCkh+pk6uj3tCvbuBWrbtm1bq3AofZuj8XQGVIiEh9MfdZasoLEaw0PpRDr99b+8Nn3kGm1SnpXg2tfjkzz7vtdoq/t11c/0E6y32b6iOooOqpPvPTLeyodIXNREIe/odm/sSTB+1SzDViXV7bGnb0N50LcUm+3GW8z2/DNaHEk2fupOuceeQ1g632YHne6ezclmevwi6fR97z2BWsCb7CzSoij0MIeZ1PMZn9+h599KfHtg1j4g7sOp1pVFF29Azs2SCgI3kXEc9fi5F+65DKiocj+mC+edq+y/43xuAbc/nUinf1i+zNFrtEnB2xJfLP3jyVqryP2Ynhf7CXq+9O864XaWdGW9yk2e55aUYsxaVa+qKpWt7tHDOzOSYPyqhRnWseK3vR3CrWu6B13M9ubUuM1Td8o99hzC0vn0FEVmHKhMjFcurFYYabWEbRp9ZXPy3qemFShjes69n6+HJNK7EgYh/dGe1cUPzP/dUUkZCNds6Wzb0b35zQpI88/j5/a2uYnvz0DTNO7HwunUXnt6HEfvpO1MZ17v9F/rwYtco01VVenWWpzqGTmod/Tb7eaWwt5PUCfh/HPC3ci6WG3X+VfZPU3TMAxrfQnqreq6zj26oqAXSBYT3LxqYYZ1yeI9E4s1Nu+mUrYzp5tEN/naA7Xn1B2/x5527bCU5u6im+Fk8wPzT2yL1CsXO473hCUVDR+caaqf5hUNqoJF4uXmrhle75ksjvN5te856NgJW0XiPX5eHNqfgaIo3GpseDidDRucUFdteHI204lUmVXYrd0Gi9dov7W2b/yg4nWN6gS6P8o6rnXCwyXh3omy/REkUvWx9L0G8eL9Eya4edXCDNsMo3h+vMqQIpAXCbxsx6/gzlM3H7vHnnbtsDSnt7vonmWwumMiD6eVZWvF9Nr2d3ow4mFJ61SiP+KF1saQNq+jPhCZJLL4AdUZ3WdGpV7Y+enWHHUavaTCx89L/KEMhL0iYSMs3qjdk06k09/tCvMc2d/BTTy8wyMHNaoi2G8Pa/02idQdHZTwys4/+29ZLInf/DqrdvTFGRZrCW5etTDDCmCR/MzzXBRFGIEWbyrvFooMLO0/dUfusad9LCxpxs7x/Z2yxHYEWKzIeLxxe03rqutaZ2NzMez830581+Zkio8vWbXOOt0Abq7iz+fOuOX9MXz8wo1e9OzZX9zRgr7v7bvh4+cNJDyUAfuLezg7J3sqW3vScavAwzB4tem1+2TxGj0kMrC0Wa3O89x9fLylphret9Tco7j1Bst213VVVdnXw3ERjxc4ddFVLivNSIJP3KIqB+LnOTxpSscLb27KYRMznpPFUzcfvsee9rGwtNli2COF3UU99nalyGfcMcy2bVXS9X3fNI3uj/immZH9LuPblut0fXZHMiuwNEdWfwybFJEvujTDW/8eljgqU7wHPhzE8gZ19QE9XTb+Pwd3rJ58N88PZcD+091sqWka/ZzF0tP9sTvTcYt4bwPcsBFgwmukQ+/c+COcuibeAN4a7/HxToU79dQrW3VC7vd7GLrsadL85sjRveaLlbmKRvEEN6+al2HdHn3fd10Xb9mE/X5hoHKzvTlSu+fUzYfvsad9JizZbPeDWzy9c3fRnfZsOzQ7Q442uGqNpM29w23izSKLTHVd28NjO5R//PW4en7UCemV+PFSzxs9VkeKm4hX6i2GhPmn7HDPsJ49OzPWAeVt6eTeseM4qt/PTWd/BsInX4ezWqcXKVV9cX/sznSstNLyFDcbkbs0vEa2A/3i5z1rA0tazLT5dbd5pKQyZzq1e85VSrrTDXQG3K308zy3ElypxbtG3fXFdvTZKXAjCW5eNXcfk/v9bi3psiwjN7+7XZOOGFbgtNJLp8KGACLFyJ5TNx++x572gbBke8FF6ms72dl/w+6iO+lW26wSzj9vUreXWYTj8Iuxxysr12hChFLW4tBEtm22hYTuKfJqoGtUqbQh5bAT2BYVqlN0sQDKgs4NrU+0/9TiTdWCvWl+tphxrRzZmQH3yVdtOlxRqxNlP/Z2u3k/dk86KsU0ah3/uiu8Rg/NLVocWNq/y5FWbmoStqb26T+9K2IZU1ZtyacbNuaf02JzEDbnoKow0dGbptHjphfN7Elw86pZhnVF9J+2eGiNfcsm0HuUKz3pm7Oldp66+fA99rQPhCVNh7d3LhxJKnvv7qKb9ux0F+E+zLpRws+43UrfYXNTjBTEp9te0aN9FWpw70w5vJpauflA/vCsxcVz1/LusNS2rW5uW5fzdIBNYXdRz575DhFuSbH4Hs/b7fZNLwXQpd8zsPRxYdff1amavP/z1c/bI+MW17V8fKLNd/P2OFYHzKW3PH5rWNKuBN5QytM3awq7i3p2Diyt0QlpmmZxzcHxd6InxfZoCXsvU6NG8JdV9jX/c+eH7/d7pN6gi+juYePWqHTfHhxFRkTm7AERLhW/oveFJW+Ue15Z+6nOq2yd+/XyLbuL7qRsHCm83J8ZtsEX34l+XVYpCQd7klI575u/et+IS/XCPZ/0JhqEdGbGcQxnJ87zXFVV4k3hq7NydW1CxOW8Lyx5i5Dnn/qyO+tBs8g03qihY8Ue4xYK2Vt2F91pz2KjTbqr8jwPy77wnehXZ4PD3xRrr2XndF4tYIp8QPPNwpksM++ifQt3FsZ3DH++KSwtTszX0Jy3dM4NXQ/1M+xn75XYtHOioM0tfF1P1P1+/44bDulYm1Zzlq7rvqZxiXd6R1gKN8YQd1mAuCWvgkfit7WWJmQ/S7U/nR0AuLx3hKW19eHxWQ8q7j++/DNO/ZCJZxIALuTlYUl7Gq7938gw8tq2WknRav+1yAoAeNRrw5IG6iMjLmpthB3c8T2Mva4/E76rNGRNtE07u91tsx8iEwAc99qwtDnVR7MewtkQ8c3S1ybdtW37kanGe15mAQDY44VhSYNDO3nfPf0tvK+mDCc+QQMA0veqsLS/r0zCl39/dm3so/a8zwIAsCnRt9OO4xh2iE3TpCVjXneZ/v7ZqEBYeppeUaHxuSzL1vZIXqQJNYztAd8k0bC0SJtnqx3mzsnWzii2BdFHHAlL2t/eNrb4VbseaJtEvb9gdraeWnuNYTgX33Ztf0d29zn+0nHgN7tSWFJ5rR1r7I8KSPO+aXiv8/QmrdpGzL6ooPtLIlPknWbhyKL7XmfX2rtQP2jPO+ABrLlSWJp/yqbFTp7PFgT73/7n0s8Jtwr8su3vFikmLTYpFl8LvTY5U+mkttkrK6yBp10sLGkUYZ7ncM7bZyfCqR/p0cJo8c0o9hu/mG1LuDjZUq0NLzavTc5Upx8bBgJf42JhSR1c2jHX/bsGlj61bOi596suNhcSHCl5BcWYtQXLi+czDFSi0M6KMeBrXCwsaVJA2GPz2YEle5v9Q99Sq8jrlTr+0qb0bb4ERP11mfOOR4990gaWtNl8URRVVS0m2/d9VVV6+YK3HLtpGpt2Ude10rHmV9d16la1KzWOo00X1G+xuoVeiFcUhXdZdXQJ3z4QyRvwC10sLK357MQn7VXxUAbWerGU1He/oka/MVKNUL+cO1IYH1hyz5je1+V+xtYP2NfdSZv3+12vA1c6+oz1o/Z9r3meSkFf0axLfVJJ2YeVZ/fD9hkLNvr5e/IG/E7XDksqEVSmfHCQ+YlpeGsNLHVJ7Xk523Wp0I9EcZ0Et00cH1hyk/JCgh3ObYK4Rb/aLu5rVfXvujTWKnLDpDdRUHmYfxYwzMHsG73WUv+u6ogFznjegN/pG8JS9umllE/kQWWZ1xsZnwjwNfQb16K4dfG5J2H/wJJ3VtXMsvA/jqMqBBb4y7K0l2ZZzabve6WpTN5utzzP7SheZtq2VVzUh7307fdWVXW/36dpGoZBSW3mDfidrh2WUmCTFB6KJYsbE6ic+vr1LvGwpD4u9yTEVyy5n1RDx41SOs82bFPX9e12C69U2MYyur6WWx3CjXxK00vKzYP+YmxgaWfegN+GsHTUc9PwFr+yOAni+0TC0mJ7MT6w5KajyQvhsTbL+khtQGHSUlC7yp2zkOe5NbMW93fQ7koWnCyHv6FlDDyBsHTUc02ccGApwd0KXmSxA1M0huRFIHdgaRgG+6LScVuceZ43TaNOOf1lT43B22jDk+e5G+qUGWsMDcPg/l/FsK7rLA9d11VVZZ93F6U9UZsBfgPC0lEqHB+dO6euG/cvKu9+w+4ANuzvLTZa2w3PDQzuG7y89xerftB1nSbX6Y+La5O9dW9qAK0NDXp1Di9BrwfPsnS/31XDUOyxy6op7PvzBvxChKWjntsNzxtjDyv+382WEisyDcOg0xjfVkqrgvTHsLvMJl6XZWknVhPbLHKoEZPnuXuqw9Egl9s8svnoSl+xx5twoTkUdog8z63Koq9br92evAG/EGHpKJVTTxQlGgjRcHfbtr9tnwKtIdXZK4ridrutnQGbTF/Xtdt75oWxYRjUBvXaWwoeNrMgPFC8D1abmutK2ZLbPM/V7vGS0rHcBbNq/dikBm8kaTNvwC9EWDrq6bCERNiMbQApICwdpS4gXpcOAKcgLB2lLqZwAB8A8ATC0gnUYPrujewA4D0ISyeYpkmj9+EYOADgIYSl03Rdp/cjfDojAHBhhCUAQEIISwCAhBCWAAAJISwBABJCWAIAJISwBABICGEJAJAQwhIAICGEJQBAQghLAICEEJYAAAkhLAEAEkJYAgAkhLAEAEgIYQkAkBDCEgAgIYQlAEBCCEsAgIQQlgAACSEsAQASQlgCACSEsAQASAhhCQCQEMISACAhhCXgGqZpKssyy7K+78uyrKqqKIqqqm63W9M0RVG0bfvpPAInICwB11AUxTRNWZZlWTZN0zzPwzBkWdY0zTzPXddlWfbpPAInICwB19B13TzPFpPm/4aitm3d/wVcF2EJuAyvSVRVlf1nURS0lvAdCEvAZbhxaJ7nLMuqqrJ/b5pmGIa+7z+UO+AchCXgMmwkyf5TPXtqRQ3DUJblMAyfyyBwAsIScBmahqd/7/veWk6aClFVFZPx8AUISwCAhBCWAAAJISwBABJCWAIAJISwBCQqe4FxHD/9s4ANhCUgUdoBT8qy7B9xv9/btq2qKs9zNyzd7/dP/yxgA2EJSNQ4jm5EeXqdrLZ2VSJ1XZ+bSeB0hCUgXXVduw2mI0lpyW2e52flbb+mafQT3n9oXBFhCUiXbRku2tPhaVqB+5HhJcIS9iMsAUnT1uByvK1T1/VDw0vTNLVte3xj8uy/2yYBEYQlIGnTNLnTFm6325HUhmF4qMllLx48clD1H7KHLHYiLAGpu9/vblfe216qdLvddMSDW+3ZxufaTLYoipMyiO9EWAIuQK9Tkvf0hunVtzquvT7jORZNq6pS8+usTOIrEZaAdzhltsI7V8UWRdF1nUa2Do5pKbwpmrZte7AfEl+PsAS83DRNx3uu3NW1B5svm9q21QonDQsd6Tm0FBhewk6EJeDluq473vN21uraTX3f53muOKSuvCOHs4EljVQp/RNzi+9DWMIh0zS5Sz5DZxzk33/++uuff89IaZ7nN+X5P5qmOWXXH1uXmh1eXbtGE//cyLE462H/ObSsqtk0z/OLco6vQVjC89Q3led5WZaaYaUyyJwxivDvP3/9+fP3aaMRb8mzryiKU0aDvNW1r9jgrq5rr2GnzkO32/Chc5g5q4Czn839Ts82vglhCc+rqsotwtq2Pb0ifPv7z58/ZzaV3pBnj9ofZ6V27upaT9d14RiYmmjusd5/DvGrEJbwPHd2mUY+Fpsaaz1jNuqw4vb3nz9Zlp0ZlF6e5+UjnrtBqru69uCKIpeaYsMweH+3VVP2l53nEHgOYQnnUC0+LNTmeV7rt2nbdnUiwL///PXnT2ToIm5nA+vkPM/zvPslSUeaF+7cthP78aqqWowu8VkPkXMIPIewhHOoCn9umv/+81eWZScOLHlekedQURSnl9oazjkx2dvtFomUCkuLQes95xC/CmEJJ1BPzksW0/z7z1/nDi79eGGeHeoZOzfN0xso4zjmeR6ZlKFZD2FXZPwcel1/5omOUPwqhCWcQEtSvA6laZo0Lyv772JM/f2Rjqzb3y8ITC/O8//puu7cyKdp2ec2v8qyjHcGatZDOBti8Ry6yT7XEYpfjrCEE6j+61W3i6Lo+14jE24xWhTFNE22iuVT3pPnpmlOnA7wipjkTu3b5H138RwCBxGWcILFZoQmiRVF4dayVbjPCfTkvCfPJw4s1XWt6HhKamLTGXbyWj9PNB+BTYQlnGAcx8XiUqXe4i6lHy/R3pPns5YWvSImHbd4Dk/vCMVvQ1jCC2nC2DzPYUfW2syujzsxz9bMOkJbKiQYk9Yk3nmL9BGW8EJZlrVtOwyDN+yvsinNcjapPJ8Vk7que9vSosQ7b5E+whJeSBumhdOuUi6b0smzYlJd1wdj0jAMb25spdx5i/QRlvAB2esXDJ3uzXm2mHQwHUWIV2zqGnHFzlukg7CE97HZXKfPcn6dj+R5GIY8z4/HJK0rOn1H101JdYTicghLeJ+1ecYpe3+e1b45EpOmabrf77aj6/vPdjodobgiwhKQEItJ/eO0e4I60ExSAzlX7LzF+xGWgFQ8urh1jxQ6S6/YeYsPIiwBSXBfV3GWc9/z9DTLz4U6b/FBhCUAQEIISwCAhBCWAAAJISwBABJCWAIAJISwBKRIL4TNDi8+5VWwuBzCEpCog2FpmibFNqZl41oIS0Cisix7uqGjtauntLeANyMsASnS6tqDDR3CEq6IsASkyHY1HYZBO58+kciR9hbwKYQlIEVq6EzTVFVVWZbW6HF750Lum/e0wx4DS7gcwhKQoizL7N0Qbds+8eq8tm3pwcMVEZaA5Ljbtj7d3LFXxALXQlgCkmMDS3q97DzPCk7TNEV68LxhpIyXG+GaCEtAcrKf1/ep2TTP86Nv89PAkjvUBFwFYQlIjhtRFKL2d+V5cyKSejstsAdhCQCQEMISACAhhCUAQEIISwCAhBCWAAAJISwBABJCWAIAJISwBABICGEJAJAQwhIAICGEJQBAQghLAICEEJYAAAkhLAEAEkJYAgAkhLAEAEgIYQkAkBDCEgAgIYQlAEBCCEsAgIQQlgAACSEsAQASQlgCACSEsAQASMj/Av1NctaSzwqUAAAAAElFTkSuQmCC" alt="" width="381" height="141" />

.

上面的第一个公式体现了信息素的更新值的计算,其中,Ck代表第k只蚂蚁所构造的路径的总长度,Q是凭经验设定的一个参数,通常置为1。component(i,j)表示从城市i到城市j的一条边,m是蚂蚁的总数。上面的第二个公式是说i和j这条边的信息素值tau等于这条边上原有的信息素加上在上一次构造路径活动中所有经过这条边的蚂蚁贡献的信息素更新值(即第一个公式)。

假设三只蚂蚁构造的路径长度如下所示:

Tour 1: 450
Tour 2: 380
Tour 1: 460

则它们的信息素的更新值相加结果为:componentNewPheromone = (Q / 450) + (Q / 380) + (Q / 460)

最后把它加到各个蚂蚁的路径中每条边原来的信息素值之上:

componentPheromone = componentPheromone + componentNewPheromone

上述信息素更新过程的伪代码如下所示:

for ant in colony do //蚁群中每条蚂蚁都逐个更新自己路径经过边上的的信息素
tour = ant.getTour(); //蚂蚁计算路径的总长度
pheromoneToAdd = getParam('Q') / tour.distance(); //蚂蚁计算信息素的更新值
for cityIndex in tour do //回溯路径中的每个城市
if lastCity(cityIndex) do // 如果当前城市是路径上的最后一个城市,取出它和第一个城市间的边
edge = getEdge(cityIndex, )
else do
edge = getEdge(cityIndex, cityIndex+) //否则,取当前城市和路径上下一个城市间的边
end if
currentPheromone = edge.getPheromone(); //获得边上之前的信息素
edge.setPheromone(currentPheromone + pheromoneToAdd)//原有信息素加上更新值后得到新信息素
end for // ant路径上所有的边的信息素更新完毕
end for //蚁群中所有蚂蚁都处理完毕

信息素的挥发

在自然界中蚂蚁遗留下来的信息素经过一段时间后会挥发,我们在算法中也模拟上述过程,具体公式如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKwAAAAXCAIAAAAZXjM5AAADXklEQVRogd1avdHqMBB0A1xjFKA2lFGAOlABjAogV+rYoVMnzDhzpgruBfsBBusP20g8NgSPvb7d+5Hkhn8L4zhKKcdxrE0kDWNM13W1WTAzN7UJ7IlxHIUQ/4UDmHmaJiJyztUm8kMmGMeRiPq+j1ygtS5JKQkp5TcUgx8xgXNOSnm5XEIXwCLW2pKskjDGGGNqs/gVE1hrhRDe0jpNk7WWiIhoGIby3CKw1kopa7P4CROguXrrqtaaiIwxMEF5bnHAnbVZ/IQJjDFCCO9f0zTxrRcopcrySuOLTOCcu+eKFzs963o+Hs/XnW52A8pAvNm3bVt4IOi6TimllJJSRmbVy+WyPbzb5WswUgkh7qSRNHe0bbuRJTMzX8/Hw+G0y62eAIGR8SGgKZQZCJxzCCMoDcMQWbPgyo2P2y5fo7WeD9XW2lDZDNkKIY4/pj0dDof9ywAzCyGScUwnRHuKZBKQyV8p9bL6J6IQw7wmdT0fD0TkzaFM+eLaNXOTorSGvKOU8iaTtTayNoMBiOgTFsjpBRgIyuwQdF33EkDnXEiAHPLMfzWUiLx1NFO+uHbNy09EtOeO2+0F1iGZfAh6vM7jpXZqagmgGs97E9qB1wQ55N/CavmeTCCESBb2FbiejyEjbwQGovg1qM8F9pKR9C/rFIx+3jqUQ/4trJbvYQIUkyVdTDrLVoff87raX0nYvSPkDFahRNwdfd8T0UtnhDDedCeiHbcLvfJlavcwAcbs5ZaLlHIYBnTWeT5JKZ1zePM8nu1pbxskmz2qcZmBAEk/D6DXFvO/IqvHd+GVL1O7hwkwKC7XWphcpJTznMMtOG9p8DkkByuU3DI7BBgIEF+++S+U61rr0AbXOnjly9TuYYJIYY8c0OW2g88gJDDS4gUf5YlqjFNBBF1rHUr0yD73aoReMEe7p5kgdLYNjzPzcsYuNnh7USzLk8CoH10qP2CM2f3cKCRfjnZZZweI9fI8Hk2l4mcRSqkvMQH6Tk6PR5sodp6Zo12WCTCEL21edyDg6P5mYWAVkMwH55wQoqRxc7TbdIpYbPAOAQ2vIgEAOwQ5dtRaf8NXJPys3RoTYM5CWav+QZ9SqvoXWs45rXUyFN/wHZFXu/UmKNnYIsBBam0WafR9X3GCvsOr3T8aE9y2wDVZMQAAAABJRU5ErkJggg==" alt="" />

rho是一个人为设定的参数,称为挥发率,一般为0-1间的数。

相应的伪代码如下所示:

for edge in edges
updatedPheromone = ( - getParam('rho')) * edge.getPheromone()
edge.setPheromone(updatedPheromone)
end for

精英蚂蚁策略

 精英蚂蚁是对蚁群算法的一种改进,所谓精英蚂蚁是指当全部蚂蚁都构造完各自的路径之后,所有路径中最短的那条路径所对应的蚂蚁。精英蚂蚁策略的公式如下所示,它和上面的信息素局部更新公式的唯一区别在于精英蚂蚁在像其它蚂蚁一样更新完自己路径上的信息素后,还要再重复一遍信息素的更新过程,只不过这次要把更新值乘上一个参数e,e通常选在0和1之间。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqcAAADBCAIAAAB9tY49AAAbxklEQVR4nO3dv9GrOLzG8W3g0NgWQBtkWwAdUMAOBZCTEjskdbIzZM4o4F5u8MzR1ZFAyDbG4tX3E+zs8WtjSWB++s9f/wMAAPLw1/8CAIA8/LUAAIA8EPUBAMgFUR8AgFwQ9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPUBAMgFUR8AgFwQ9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPUBAMgFUR8AgFwQ9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPUBAMgFUR8AgFwQ9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPUBAMgFUR8AgFwQ9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPUBAMgFUR8AgFwQ9QEAyAVR/8sej0fbtkVRTNP07bQAAH44ov7XzPPc931RFHVdPx6Pbydn0zAMVVVRLwGAH4Co/x3zPCuUDsPw7bTsU+3k26kAALyLqP8FJuTfbrfTvrEsy5d7FJTaY5OES5umqaqqj3b/tG172g8EyAdR/wuapimKouu6mDff7/e2bcuyLIqiKIqyLLuum+f5qW/suq7ve+fFeZ6HYVBipGma+/2uPzVNY94Zn9ozKZF1XRMbTjZNU1mWnx7xeTweRVEELnXVPOq61tX77I9C2rat61r1Wv83gg+h2L+IqH+2aZoib1KPx0N3tL7vTTN9HEd9PP6e+3g8yrK0XzFTCsqyHIZBBzcvmv86CVb9QNWCZVnu93tVVYq7H60T6O5v10KkbVtNhKQf4ljjOAauLl0P4zjaL26doxjq+qqqyv9TVVW7Vbqu6zQ55oWvNlSrNtd2ysJn51r8Yl+9kNLMcpqpikHUP5ti6u79UffWqqr8ykF8vUHqurbv0WqobU0pUPKKojD1DL2iX6YCv143RxiG4aNx936/+7f1eZ5NBSXBfojr0tXVtu3qXxWh/QJfPUdPfePqZ1WxC39c1+Q77UVdS5eoO4bPzrWsFrt/IaWZ5TRTFYmofzbTfA+8JxDyJf5Od7/f/Z9QoKtAdW37I/agvhP1VRuYpslp+R3OT63uDpdonF2L6nBbLey+78uyXL0s32n3bH227/vVPgCbuQ5f/nb1n73ZW3CO8Nm5lq1idy6GNLOcZqoiEfXPpptUIEyaKnDgNqo27u4NcVkWe/zVHDm8cMB5g92YtuvmZkJATDIOpxJIecXjRem0rhasaoRn3ul2F4+YWuw736IxgkuspgmcncuJLPY0s5xmqiIR9U9l4m7gctFYdbjvyPTDh7+u73u7M1ZX6m6bxpmoZddRzNjEMAz6uX5rUZ/d64ADabbH6p80q/TMxOxeXbfb7eX5BIYGvC4xRhs4O5cTWexpZjnNVEUi6p9K/dKBG5maU7s/hpior9V6pjPWtIp222rOwIGJ+qqbmxdVe9AePuEDvux2u2mir0mzmb5nhCsx0zS1bauZ3lVV+V0sWiLRNI3e47yh6zrNWJymaZqmpmn0TtWl+r6v67osS73BfEqLC/Q2zZHUt6+OyMQkoO/7eZ7NtGfn6+xDmePUdW13eu8eRz2WDvvgujL9LPjnKJ4Kp2masixXP25fcqtMFdmcmq1C3ioZ84vzP3LUebndbpr02rbtOI5O61ZpE/+LZPfs7CZ4i06f0na73Zy0PZVN31PF7lxIkVneOv6H8huTqvQR9U+liyYQqPSG3Tiqlm64stm2rX1N6wZaPL/ASTUV3ZXMZ7uuM/ep11ZMxXyvCkozIew/Rc4YV5ZNGPC7BxQzTCmp4Whul7pZK/v2ZGN9uwkwql3Zp6zv+77vTQ1PxzfTD19OgO6G/tfpRZWSiZ0aNH32OIHRSv3J6aMKnKNdSrMOuPVx3XYDB9F5MTsHqGprF3K4ZJbfZe50rR17XswEHX/JiRJjwlW4lhM4O+EEb1GFWKdAR7BvKfHZ9D1b7FsX0laWd4//0fxeelB/IeqfbLf3Xpfy7qR03TsCx7nf706dQJPyLjFlSaqq0t3QT7ZuGeHJjM6oofkxb71B7CqX+gZM8HamR9hJUuyxD/J4PHRrsE/lawnQ7cx+m79pkl6x2zr2TTD+OIHRytV7feAc7VLdyBx89ZYdPqyqX87sQqeQwyWz/P5J2nfwA8+LDm4vdnVqq2VZmgya7Gzld+vs7CZ4lT4VSFt8Nn3PFvvWhbSV5d3jfzS/lx7UX4j6J1NQD0xgUYAJ1yLNkv1Aj5bf36WP7E77T+dSVlIV4J0C0Q840JTxY7xeNOFh9Q3Ln9MVlQBn94Lld/mbb3cWnineL79vDc4MCXPw+AR0XWe/zV/n5vQPPR4Pp9Aij7Nsj1Zude8HztGupml0sfnLRsJfaqxW/uwC3C0Z8/4XLozd8tSh7NCr9DhTZRV7brfbPM/TNAV6zlYTFpNg31ba7JKJv2wcLxT71oW0mrWY4380v+HKWfp+QtS/0ONhdqP17huW31WHwA9PXVWrRw5Hfd1nk1oOp8w6t0Kd7kAFZXf3Q6dHVFZnXSgB9nc53bB+m16cW4Nzd45PQFVVdqeO/3UqDTO6qZGd1eZR+DiBJci6q25dGKvnKN5Wz034S5ffZWj/6lUhM4W8WzL+Pf3A8+Ivr/UrgmZjQQlUZLfOTnyC/U/5aXvhsvG9UOziXEhbWY684D+U30uv1JefEPWXizweJmZ3HV33gTud+T1vXeVbW+7HbH6p1djBTJxqa/w+fEczbwjUAlffoKvI/j2rM98fK7EbDas1Tv/W4Bz8qQT4/Y1+F0L4rhdznN1h49Ujv7Mrn31w/5oPfKlUVeWcGmcEbbdkthrfB54XO1/+QIZ2xTaxP/Dr2zo7kQl2+JvirX57TDZ9LxT7snYhhbP8VK/kgfm9+qD+kkLU1zzeN2eEXeLxME5DZJUzAU3Tv9u2Vfns7rGz/DlcatudJ5jgvjemJ18XiV6M2QYuslrgvOjfGnTK/Nu9ecUei73f7+az/q3BGYl8KgHmFfvrTJnsZjbyOHbrZ5omu30TmFW3eo6eEhjUD7eo/Dc4gXa3ZEzjW7PDtj5yyHnxo9o4jvYM2fBNbOvsRCbY4XzKrqT6g1nhbO4efCsvdrEvaxfSU1kOOzC/gZ/JVXw/6u+2bmMUV9iWVRXwcLiyJyj1fa+wcb/fu67TlRp+6knggSXhB/3pck+tAmviwe12M1Fntx2zbAQSLb3T//t3WMVp50bmTyBwJvvoDbr2zIykxbuqVVOx0/xUAsw/7R2ItYxi9VBOZiOPU5alqZLWfz7TqNhuzfvnSF8duemNWRDhvO5Mntj6aru4VIDhQl7+LBlzTzeJP/C8OBeh3hPoV9AisUBmV89OZIIdThRUdm63m7brfiqbvheKfVm7kOKzvHgX/OfyG/iZXMWXo75Z/vjONtpffzxMpJi9eBdr4omZnGwyuPu0PU0L2vqrCfxt25p7jXmmX4KzIlRJ0piFE1DDQcWZ3aN+VPsgTlDZulGquOwy133BlJXpnXZ2Prav6sfjoUEB+zjxCfDvSvo60+BwKiKqL9qZjTyOqZJqTbOdjMB1658js2nj6vsdW4P6WsQf/qy9X+/qArzdkjFZNiu1Djwv9vaRSl7xZy9dWZYmwXpDoNd66+xEJtgvOnNhm5uwWhf2Z2Oy6Xuh2Je1Cymc5fAF/7n8Bn4mV/HNqG92mw+0JGJ8/fEwkVSZjdk94/F42E/X9SeUrYZ2J/Bs0Vw/HVk7zCRbXVWt39lyxL97rhrHUbFWU378UaRxHNVxrTGU1VtY4fUhaVcQ88/H46FX7K5ae4cDHX+1jhKZAPuupAaNv1OKCspkdhgGJ7Mxx1Hg0Wym8Mdt/jkyO0Osvt+xOqgfv/WvtlWp67ppmtVfVrhk1DDQ5WFePPC8aEK4ju+XiT5lpqSFB6oDZycmwT5TdGZTGrsW8lQ2V1P7bLH7F1Igy7sX/OfyG0jVVXwz6mt9ZP/7ka/vHMf8nJovPR5mV8zu+gH2nVGXrP8eu4f5p9qdnJwCXdJfv+QOFNN8tKkDKfLI/tnUbipPpC957895BI7ytajf973uC2b1+cv1piLJx8M4YqbyBdi3Xe0l6bxhGIZLLybZpcsjZlD/6/xxgatzmmW7tMfZ7ttWV3AlOKv0fauz1oGv+E7U185xzqD1y7/zIsnHwzgiB/W3qIi6rltdG721Wu/HMLtv+oMdqVGnTgoVzQNpLUnkm2+3W6BappNo74pqV2F1Jb8zyycRGuYwF2r61y3y8YWo70zOWjY2kFE/drHN/vi3Hg8TSQ39d5JhZ9xvMThzUn4eUy8s0l6sYbqXts7URalqHvNODbiGN5hT/PPXNSzL0jRN4h05kUw2l7XKDfBFX4j6bds6N25VhO1BL80210QYTVRRFDfs+6k9eerMx8NEillkv0tTSMqy9APJ4/FIamudTzCTd3525SZlkYuUtN468AZNt/YnaS7L0rbtzwj5i/VsN800/GEDFri0s6O+ZlY7L6qNboeupmnsmsFTHYzvMM9/3BU5McesU/hc597tdvtJE8eQpq05pEfxH0EL4BNOjfoa8vSbvGYxq3nFDmOKxJe7I2gVqUYuftLELgDAdZ0a9bd27ApP6FPsTHAPmTANW1wu2QCAH+y8qK+HTGz9NTD7aWub7sRpR7atqgwAAOc7KeprxllgbFstY3/gMLy7hTMuYNh79cQzXQ67Igc4zQ64BH4AQApOivq7E4A1oc+f6Bd+rGFd11uDAoms74p5ui4AAOc4I+qbPahjOJ+1H2t4UcrC5WYjAgB+no9H/fhuc3Ha7sXeo2nTF/OAXQAATvDlJ+3uejweft/4PM/a/sLpOdfrqYVYov6B9MxczZYoimLrSWurNJ+UmRYAcpZ61F+lh8upF8FeGqetQLX97ReT53gn6s/zrL33Fa4y35lOj29omkYjPmbP5tVpH+M4+ssmzZMPz0huHJ7GBuBMl4z6Cn7aotW8qHi/vDqB/3Nefu6Odho2H1QtJ9vAr62c/NUTq881UVltLQn5+nMZbDrLdAUBOMclo/7y+7a+2rub2j1U+w08u2muMug/sODHb7m/SiF/tUGsVR5OgN9a+qHjJLK+w2ArJwCnuWrU1+jssiz+3PjUJsyrS/nZO7vqCk4T1uQ6K+bhCKtLOdRWdipDW0s/NCLAYwsAZOuqUV993dM0Oe0/DeqnszheMenZUL3atE1wTPocCuFbOyOtlrBfDxDVpdK5PADgZFeN+prd5nfVpjaor/j97ECy2vROB7UqNEmNSZ9g9znF6sw3HT/+WlDzTjOor0c4VlXVNM3qYe/3e9M0ehqssxNU13VmRmHbtjqO6TwYx1GjMObcPR4Ps9BAeTGVOT2Mtaoq50Tr281zop2eiUDaAGDXVaP+ltSmQ2vPwaeStNWhrUP9mAeQR1KuAzU5ddrbMznCg/p2GVZV5XQJmMWf5uP2kpDb7aZnpes4eo8Zdrnf71pFoiPoI1rBoXfqUObNSrP9ZvMeE8uV/Zi0AUCMHxL1dTPV7TipuVEvTODf6h5Q73R4Y+OfRzE1UG1Ssdi9PuFBfftQTsQ1X2c3oO3Iqpa3LjNVHfT/OlmmTW/XQpwlBkrD8nv16eJNPi3L0vxT9T9TLwmnDQBi/KioX6S3+8oLqVJgcAYvwjPafjDleqvaZPr/7WKJH9R3ylmdBKa+9Xg8VAMzNa26rud5dh79fL/fdUwlchiGsizNtziJ6fte1Q692Tm+yW/TNLfbbZ7naZp0qN20AUCMHxL102Tm3z0Vqlc3j9NNP6kViecIR311gNvFEl6pb79TzXS7EqCSN0PmbdsOw+CfO7+HwNAZN6nVV9gVCx3TOZSdBr1imEH9yLQBQBhR/4Nem8C/+pHV+X05CET91f6P8KC+fRzNy/O/azeUBqpfqoWYI6hXwJ6OV5al6SRY3ZVPWw6b2G9SmGdPD4DDEfU/6LUGuj+on+COcqdZHe8Qjd87Ad4e1J+myXxQx7F7UMqy7LpOPfZ6JaaK5myY6CjL0q5JKDGmKT9Nk/1XVRHGcTRpGMexaRrzfnt7hheqjwDgI+p/kCLNs7Pu1Ytrv6LgkdQsxdOYGW3OIvutHfjtuFvXtXmDBvXN21QhG8dR0/L14uomSM6eEGq+b03UcCp5zgGd7n2TpNvtpiqdQrs50VpbGJ82ANhF1P+g13bgdyaL+Y3U3Jg9ixT4p2lSwYb3Y9ZqeL3o96WbFXF1XZui1pR4E5jVBC/L0i58fyTeZjfuzUJBHV+h3ZlLqOmB5ivKsjR1RH3cdOnHpA0AdhH1P0g3/Rfuyxpy1rytvu/ZS05b06g8q6oahmGrTMy6x7Zt7a51p5YwTZP6VJzeAsVmM2nO/6LwkI0eA6hzZ3byKctSrXbnUPouex8etd3NfD1nFH83bQCwi6j/QS9HfSTLLKUDgCsi6n+QeoOTehQQACBnRP0PUm+zPxMNAICvIOp/lpr7uW2eDwBIE1H/s+Z51jQ0fzIXAAAnI+qfYRxHPZ712wkBAGSNqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA+kaJ7nuq6Lorjf73VdN01TVVXTNMMwdF1XVVXf999OI4DrIeoDKaqqap7noiiKopjneVmWaZqKoui6blmWcRyLovh2GgFcD1EfSNE4jsuymJC//Bnp+763/wQAkYj6QKKcBn3TNOafVVXR1gfwAqI+kCg7zC/LUhRF0zTm/7uum6bpfr9/KXUALomoDyTKjOKbf6rbX30A0zTVdT1N0/cSCOB6iPpAojSBX/9/v99Nu1+z/JqmYRo/gGcR9QEAyAVRHwCAXBD1AQDIBVEfAIBcEPWBVBQf8Hg8vp0tAAkh6gOp0Mb7Utf1/Rm3263v+6ZpyrK0o/7tdvt2tgAkhKgPpOLxeNgB++UdePTAHh2kbdtjEwng0oj6QELatrWb++8cSpv5lGV5VNoidV2n9J/8vd81DIO2SWbfJCSOqA8kxDxnT7QZ38u0t8/5Q/sZRv3l9yORvp0KYAdRH0iLgoe831Jv2/apof15nvu+f/NpfsWfewmn75Bc80gkXAJRH0jLPM/2jLxhGN452jRNT3UYaELAOw/10cjCtR4L9H6ulwvWdZAnoj6QnNvtZvfzv9kGjTcMg77xnR3+zaMC9XygqqqOS+BHHJLraZp0EGXffoBCVVVN09R1TZ0AKSDqAylSd7GcEy0Ut/S95pG+LzA1FYW6xDu9j8q1xmUU7O1HJJveGtUtDkkz8A6iPvARh0zEM06YkVdV1TiOil7vzCdQEFVNpe/7d0Yo3izDGEfl2h7Ud6K+agPPDrUAH0LUB443z/P7Pdv2pj3vNENj9H2vlf0alX95WMF8/P1h8kPKMOyoXC9/DurbSxhUA1BN6JA0A28i6gPHG8fx/W75ozbt2XW/38uyVMAz49OvfZ1p5poO7ZeTfUgZBhyY62VZCmuZpamlDcOgrg4W9SEdRH08YZ5nexsZ30Hf89+/f//973/HHOusNP+h67pDtsI1O94Ub2/as0VLBuxop69zprZFFqNJp1rPy7K8nOwXyvB+v7dtq/kETdMENsw5NteLFfV1ysyLyr728HkqL8CHEPURSz2uZVnWda252bqpGW+uMfvtv3///vXrn0MOdVqaXVVVHTIS72za84lN9du2dZrUGlmwxxTii7H4s8mrpwm8lrCnynCeZ2f1ndZBbL3/2Fwvv+dhNE3TNI0ZJui6Tq/UdX3aQgwgjKiPWE3T2DfKvu8/0foc/vn169dhDf1z0uxQO/Koox27aY9jHEe/DarWqv1d5xfjs2WokGzXMExngy/ZXAMnIOojlj0DWUPOWw3lrZ5ze27zmuGfX7+Kojgs5ken+dUEb37psc+8sTfteWdNuUMdCX43uNktwLwSf+qP8lQZag6BCcnzPCsLq10jKecaOAFRH69QA3Rr3HSrX7fv+835Wf/9+/evX4EB1LCY7oFAml9J8G+RKXynmWhPjD+wk79pmtUwFp7aFj71r3mzDNXQr6pKHe/K19boQDq5Br6CqI9XqPV5+GH/+/fvoiiOGtR3fCjNvqqqDg8Phz/PbRiGQEVE8W81Op5TjE+VoVIb8/7Ecw2cgKiPp6m381MryP/79+8DB/Z/+2yaLepAPvaYhzc0H49HWZaBuXKa2ub3sYeLUVHTf/3ZgZJny3Drex2J5xo4B1EfT9Mwqt/VrHnUunXaM5bN/OroXu7hn6Pj/mqaj0vw/xvH8di6hVaOHdt5UNd1eKRAU9v8KW9bp94c9uWBEtuzZbgaX3US7dOaeK6BcxD18TTdZP02U1VV2nnUiVJVVc3zHJhTfYLVNH8iwV3XHTjn6xMh314UsMv57NapP9azZahVc+Yjms1XVZUdp9PPNXAOoj6ettUI1vTyqqrs1pLC5/LtDs/VNH8iwQcO6rdtq/rHIUcTM2ctktOK3Tr1x3qhDO/3u7OS3i63S+QaOAdRH097PB5boUi319WnjHz31rmV5sMTfNSS+k+E/PetFuPhAyWHb0vwpnNyDZyDqI8jmSeP+T20RZLLnY9NsOkneIe2hEsw5G85dqDkkDI8QcrjWUAAUR9HKoqi7/tpmpzZWLoJJhjGUkvwUSF/HMfTFpenPLLzOXnmGj8AUR9H0nbl/tTlZG+CSSVYIb9t2zdD/jRNJ3cVJDuy81F55hpXR9THGYpT1sof6PwEm5D/5nEUij7xnJ6Ay43sHCLPXOPqiPr4IDMjurjIbqbfSvA0TWVZvh/ytbL8/NlwqQ2UnCPPXOPqiPr4oK2lUMn6SoLVOn8n5GuFunlIz/mlndRAyWnyzDWujqgPfJMJ+ffnafc39TMbSQ0nX25k5xB55hpXQdQHvubZ3WNipDCScrmRnUPkmWtcDlEf+A77+blHeX9mwCFMeq4ysnOIPHONyyHqAwCQC6I+AAC5IOoDAJALoj4AALkg6gMAkAuiPpCErus0A/zN42gR/yFJAvDzEPWBVLwZ9ed5VtWBlWMAthD1gVQURfFyM12bwxzSWwDgByPqA0nQpj1vNtOJ+gDCiPpAEswjW6Zp0mNdXjjIO70FAHJA1AeSoGb6PM9N09R1bZrsdte9bxxHcwTt6s+gPoAAoj6QhKIozGNb+74fhuHZI/R9T/c+gDCiPvB99pN4Xm6s65G7xyYMwA9D1Ae+zwzqD8Og/1Hsn+c50L3vDOEXPNYdwB6iPvB9RVHUdb38bvQvy6J/xtOgvj3MDwA+oj7wfXbAVg0gvp/fme73bHUBQFaI+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5IKoDwBALoj6AADkgqgPAEAuiPoAAOSCqA8AQC6I+gAA5OL/AMYRwF1qFIAjAAAAAElFTkSuQmCC" alt="" />

蚁群算法简介(part3: 蚁群算法之更新信息素)的更多相关文章

  1. 蚁群算法简介(part2: 蚁群算法之构造路径)

    蚁群算法主要可以分为以下几个步骤:首先,蚁群中的每只蚂蚁都根据地面上信息素浓度的大小找出一条从原点通向终点的遍历所有城市一次的路径(构造路径):然后每只蚂蚁沿着自己刚刚找到的路径回溯,在路径经过的各个 ...

  2. 从零开始学C++之STL(四):算法简介、7种算法分类

    一.算法 算法是以函数模板的形式实现的.常用的算法涉及到比较.交换.查找.搜索.复制.修改.移除.反转.排序.合并等等. 算法并非容器类型的成员函数,而是一些全局函数,要与迭代器一起搭配使用. 算法的 ...

  3. 排列熵算法简介及c#实现

    一.   排列熵算法简介: 排列熵算法(Permutation Entroy)为度量时间序列复杂性的一种方法,算法描述如下: 设一维时间序列: 采用相空间重构延迟坐标法对X中任一元素x(i)进行相空间 ...

  4. 蚁群算法简介(part 1:蚁群算法之绪论)

    群算法是Marco Dorigo在1992年提出的一种优化算法,该算法受到蚂蚁搜索食物时对路径的选择策略的启示.蚁群算法作为群体智能算法的一种利用分布式的种群搜索策略来寻找目标函数的最优解.蚁群算法与 ...

  5. 7.redis 集群模式的工作原理能说一下么?在集群模式下,redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗?

    作者:中华石杉 面试题 redis 集群模式的工作原理能说一下么?在集群模式下,redis 的 key 是如何寻址的?分布式寻址都有哪些算法?了解一致性 hash 算法吗? 面试官心理分析 在前几年, ...

  6. AI - 机器学习常见算法简介(Common Algorithms)

    机器学习常见算法简介 - 原文链接:http://usblogs.pwc.com/emerging-technology/machine-learning-methods-infographic/ 应 ...

  7. Zookeeper简介与集群搭建【转】

    Zookeeper简介 Zookeeper是一个高效的分布式协调服务,可以提供配置信息管理.命名.分布式同步.集群管理.数据库切换等服务.它不适合用来存储大量信息,可以用来存储一些配置.发布与订阅等少 ...

  8. PageRank 算法简介

    有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank ...

  9. zookeeper(分布式协调框架)简介与集群搭建

    ZooKeeper 的由来: Zookeeper最早起源于雅虎研究院的一个研究小组.在当时,研究人员发现,在雅虎内部很多大型系统基本都需要依赖一个类似的系统来进行分布式协调,但是这些系统往往都存在分布 ...

随机推荐

  1. flume 配置

    [root@dtpweb data]#tar -zxvf apache-flume-1.7.0-bin.tar.gz[root@dtpweb conf]# cp flume-env.sh.templa ...

  2. tomcat,zookeeper,activeMQ,Kafka设置jvm参数

    1,tomcat设置jvm参数 设置方法:   在tomcat bin 目录增加配置:setenv.sh   #add tomcat pid CATALINA_PID="$CATALINA_ ...

  3. CentOS 7中防火墙 firewall-cmd命令

    在 CentOS 7 iptable 防火墙已经被 firewall替代 1.暂时开放FTP服务 firewall-cmd --add-service=ftp 2.永久开放FTP服务 firewall ...

  4. xshell 语句

    使用命令 cd 切换到tomcat的bin目录,如:cd /root/Test_APP_Project_CRM/bin   使用命令 [ ./startup.sh ]启动tomcat服务../star ...

  5. vue.js在windows本地下搭建环境和创建项目

    Vue.js是一套构建用户界面的渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层,并且非常容易学习,非常容易与其它库或已有项目整合.另一方面,Vu ...

  6. Css定位之relative_慕课网课程笔记

    前言 最近在慕课网上跟着张鑫旭大神重新学习一遍CSS相关的知识,以下是学习的笔记以及个人一些理解 relative对绝对定位的限制 1.限制绝对定位 绝对定位的top.left.right和botto ...

  7. 1.3 第一个C#程序

    几乎没一门编程语言的第一个程序都叫“你好,世界”,所以先在visual studio 中创建一个Helloworld程序. 各部分的详细内容: Main方法是程序运行的起点,最重要的代码就写在Main ...

  8. Responsive设计——不同设备的分辨率设置

    下面我们一起来看看CSS3 Meida Queries在标准设备上的运用,大家可以把这些样式加到你的样式文件中,或者单独创建一个名为“responsive.css”文件,并在相应的条件中写上你的样式, ...

  9. $.Ajax({});方法使用 返回json格式 string格式

    //Json格式 $.ajax({ url: url + "?action=Save1", type: "post", dataType: "json ...

  10. sqlserver 锁与阻塞

    DDL/索引重建 会申请 Sch-M锁 with (nolock) 会申请 Sch-S锁 with (nolock)会阻塞 sch-M, 同样Sch-M也会 阻塞with (nolock) 索引重建2 ...