如何用Caffe训练自己的网络-探索与试验
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点。
1. 使用Caffe中自带的网络模型来运行自己的数据集
参考 [1] :http://www.cnblogs.com/denny402/p/5083300.html,下面几乎是全文转载,有部分对自己踩过的坑的补充,向原作者致敬!
一、准备数据
我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车、恐龙、大象、鲜花和马五个类,每个类100张。需要的同学,可到我的网盘下载:http://pan.baidu.com/s/1nuqlTnN
编号分别以3,4,5,6,7开头,各为一类。我从其中每类选出20张作为测试,其余80张作为训练。因此最终训练图片400张,测试图片100张,共5类。我将图片放在caffe根目录下的data文件夹下面。即训练图片目录:data/re/train/ ,测试图片目录: data/re/test/
二、转换为lmdb格式
具体的转换过程,可参见我的前一篇博文:Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件
首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件。然后编写一个脚本create_filelist.sh,用来生成train.txt和test.txt清单文件
# mkdir examples/myfile
# vi examples/myfile/create_filelist.sh
编辑此文件,写入如下代码,并保存
#!/usr/bin/env sh
DATA=data/re/
MY=examples/myfile
echo "Create train.txt..."
rm -rf $MY/train.txt
for i in 3 4 5 6 7
do
find $DATA/train -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/train.txt
done
echo "Create test.txt..."
rm -rf $MY/test.txt
for i in 3 4 5 6 7
do
find $DATA/test -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/test.txt
done
echo "All done"
然后,运行此脚本
# sh examples/myfile/create_filelist.sh
成功的话,就会在examples/myfile/ 文件夹下生成train.txt和test.txt两个文本文件,里面就是图片的列表清单。
接着再编写一个脚本文件,调用convert_imageset命令来转换数据格式。
# vi examples/myfile/create_lmdb.sh
插入并保存:(注意修改Caffe的绝对路径)
#!/usr/bin/env sh
MY=examples/myfile echo "Create train lmdb.."
rm -rf $MY/img_train_lmdb
build/tools/convert_imageset \
--shuffle \
--resize_height=256 \
--resize_width=256 \
/home/xxx/caffe/data/re/ \
$MY/train.txt \
$MY/img_train_lmdb echo "Create test lmdb.."
rm -rf $MY/img_test_lmdb
build/tools/convert_imageset \
--shuffle \
--resize_width=256 \
--resize_height=256 \
/home/xxx/caffe/data/re/ \
$MY/test.txt \
$MY/img_test_lmdb echo "All Done.."
因为图片大小不一,因此我统一转换成256*256大小。
运行脚本:
# sh examples/myfile/create_lmdb.sh
运行成功后,会在 examples/myfile下面生成两个文件夹img_train_lmdb和img_test_lmdb,分别用于保存图片转换后的lmdb文件。
三、计算均值并保存
图片减去均值再训练,会提高训练速度和精度。因此,一般都会有这个操作。
caffe程序提供了一个计算均值的文件compute_image_mean.cpp,我们直接使用就可以了
# build/tools/compute_image_mean examples/myfile/img_train_lmdb examples/myfile/mean.binaryproto
compute_image_mean带两个参数,第一个参数是lmdb训练数据位置,第二个参数设定均值文件的名字及保存路径。
运行成功后,会在 examples/myfile/ 下面生成一个mean.binaryproto的均值文件。
四、创建模型并编写配置文件
模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内
# cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
# cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/
修改其中的solver.prototxt
# sudo vi examples/myfile/solver.prototxt
net: "examples/myfile/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU
100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。
修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。
name: "CaffeNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_train_lmdb"
batch_size: 16 // 这里注意修改为16
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_test_lmdb"
batch_size: 50
backend: LMDB
}
}
注意修改batch_size为16,不能是256
否则会出现Restarting data prefetching from start.一直重复出现
参考 [2] ,原因是
训练集太小了,于是我把batch_size改小了,从原来的256改成16,才OK了。
五、训练和测试
如果前面都没有问题,数据准备好了,配置文件也配置好了,这一步就比较简单了。
# sudo build/tools/caffe train -solver examples/myfile/solver.prototxt
运行时间和最后的精确度,会根据机器配置,参数设置的不同而不同。我的是gpu+cudnn运行500次,大约3分钟,精度为91%。
接下来会探究如何定义自己的网络,
感兴趣的同学可以去研究一下TFlearning和Pytorch,比Caffe以及TF更容易学懂(两者都是在TF的基础上的高级API)
参考文献:
[1] http://www.cnblogs.com/denny402/p/5083300.html
[2] http://blog.csdn.net/iambool/article/details/69526089
如何用Caffe训练自己的网络-探索与试验的更多相关文章
- Caffe训练好的网络对图像分类
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可. #include <caffe/c ...
- Caffe训练AlexNet网络,精度不高或者为0的问题结果
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码 ...
- caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 使用Caffe训练适合自己样本集的AlexNet网络模型,并对其进行分类
1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深 ...
- Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量
Kaggle比赛冠军经验分享:如何用 RNN 预测维基百科网络流量 from:https://www.leiphone.com/news/201712/zbX22Ye5wD6CiwCJ.html 导语 ...
- 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?——我自己是因为data有nan的坏数据,clear下解决
from:https://www.zhihu.com/question/49346370 Harick 梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入n ...
- [caffe] caffe训练tricks
Tags: Caffe Categories: Tools/Wheels --- 1. 将caffe训练时将屏幕输出定向到文本文件 caffe中自带可以画图的工具,在caffe路径下: ./tools ...
- python+caffe训练自己的图片数据流程
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...
随机推荐
- Shell if条件语句
1.if条件语句:设定一个条件如果怎么,然后怎么样. (1)-gt大于.-lt小于.-ge大于等于.-le小于等于.-eq等于.-ne不等于. (2)[]内是包括变量时所使用的. (3)-f文件.-n ...
- docker安装openwrt镜像(不完美案例)
镜像从http://downloads.openwrt.org/releases下载 注意选择generic-rootfs.tar.gz这种类型的镜像 使用docker import导入镜像,导入后可 ...
- Android组件系列----Intent详解
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/3 ...
- shadows
http://blog.51cto.com/11975865/2308030 https://www.jianshu.com/p/247cdbabf389 https://baijiahao.baid ...
- Linux 修改SWAP分区后导致开机问题
Linux 系统出现提示原因 扩容后,修改了SWAP,或者安装了双 Linux 系统,在安装后一种 Linux 系统时把 SWAP分区 重新格式化,导致UUID 改变,所以启动时无法加载原来对应UUI ...
- Java内存分配机制
内存分配,主要指的是在堆上的分配, 一般的,对象的内存分配都是在堆上进行,但现代技术也支持将对象拆成标量类型(标量类型即原子类型,表示单个值,可以是基本类型或String等),然后在栈上分配,在栈上分 ...
- [数据结构]P1.1 链表结构
* 注: 本文/本系列谢绝转载,如有转载,本人有权利追究相应责任. 2019年4月8日 Stan Zhang 2019年4月8日 格物致知,经世致用. [面试题]1.为什么要用链表? 数组具有的缺陷 ...
- hdoj5754
题意:略 国王和骑士用记忆搜索,注意骑士的移动是x-2,y-1或x-1,y-2.车是NIM博弈,后是威佐夫博弈.注意威佐夫博弈中两堆石子有大小之分,而输入不一定小在前. #include <io ...
- 完整的Django入门指南学习笔记6
前言 欢迎来到系列教程的第六部分!在这篇教程中,我们将详细探讨基于类的视图(简称CBV).我们也将重构一些现有的视图,以便利用内置的基于类的通用视图(Generic Class-Based Views ...
- regex-ways
regex的分组与捕获:分组就是用小括号(str)括起来的东西,就是一个分组.要想得到这些分组的信息,就要想办法捕获.每个分组都有编号,编号规则是从外向内,从左至右. .例如,在表达式 (A)(B(C ...