差分格式脚本文件:

 tic;
clear
clc
M=32;%x的步数
N=16;%y的步数
h1=1/M;%x的步长
h2=1/N;%y的步长
x=0:h1:1;
y=0:h2:1;
u=zeros(M+1,N+1);%给数值解分配内存单元
U=u;%给精确解分配内存单元
u(1,:)=y.^3;%y边值
u(M+1,:)=1+y.^3;%y边值
u(:,1)=x.^3;%x边值。uo
u(:,N+1)=1+x.^3;%x边值。un
for i=1:M+1
for j=1:N+1
Accurate(i,j)=x(i)^3+y(j)^3;%精确解
end
end
fun=inline('-6*(x+y)','x','y');
for i=1:M-1
for j=1:N-1
f(i,j)=fun(x(i+1),y(j+1));
end
end
Numerical=u;
error=eye(M+1,N+1);
while norm(error,inf) >= 1e-5
for i=2:M
for j=2:N
Numerical(i,j)=(f(i-1,j-1)+N^2*u(i,j-1)+M^2*u(i-1,j)+M^2*u(i+1,j)+N^2*u(i,j+1))/(2*M^2+2*N^2);
end
end
error=Numerical-u;
u=Numerical;
end
[X,Y]=meshgrid(x,y);
subplot(1,3,1)
mesh(X,Y,Numerical');
title('the image of Numerical solution')
xlabel('x');ylabel('y');zlabel('u');
subplot(1,3,2)
mesh(X,Y,Accurate');
title('the image of Accurate solution')
xlabel('x');ylabel('y');zlabel('U');
subplot(1,3,3)
mesh(X,Y,(Numerical-Accurate)');
title('the image of error solution')
xlabel('x');ylabel('y');zlabel('error');
toc;

效果图:

紧差分格式:

 tic;
clear
clc
M=100;%x的步数
N=100;%y的步数
h1=1/M;%x的步长
h2=1/N;%y的步长
x=0:h1:1;
y=0:h2:1;
u=zeros(M+1,N+1);%给数值解分配内存单元
U=u;%给精确解分配内存单元
u(1,:)=y.^3;%y边值
u(M+1,:)=1+y.^3;%y边值
u(:,1)=x.^3;%x边值。uo
u(:,N+1)=1+x.^3;%x边值。un
for i=1:M+1
for j=1:N+1
Accurate(i,j)=x(i)^3+y(j)^3;%精确解
end
end
b1=5/3*(M^2+N^2);
b2=1/6*(5*M^2-N^2);
b3=1/6*(5*N^2-M^2);
f=inline('-6*(x+y)','x','y');
for i=1:M-1
for j=1:N-1
ABf(i,j)=(1/144)*(f(x(i),y(j))+10*f(x(i),y(j+1))+f(x(i),y(j+2))...
+10*f(x(i+1),y(j))+100*f(x(i+1),y(j+1))+10*f(x(i+1),y(j+2))...
+f(x(i+2),y(j))+10*f(x(i+2),y(j+1))+f(x(i+2),y(j+2)));
end
end
Numerical=u;
error=eye(M+1,N+1);
while norm(error,inf) >= 1e-10
for i=2:M
for j=2:N
Numerical(i,j)=(ABf(i-1,j-1)+1/20*b1*Numerical(i-1,j-1)+b3*Numerical(i,j-1)+1/20*b1*Numerical(i+1,j-1)...
+b2*Numerical(i-1,j)+b2*u(i+1,j)...
+1/20*b1*u(i-1,j+1)+b3*u(i,j+1)+1/20*b1*u(i+1,j+1))/b1;
end
end
error=Numerical-u;
u=Numerical;
end
[X,Y]=meshgrid(x,y);
subplot(1,3,1)
mesh(X,Y,Numerical');
title('the image of Numerical solution')
xlabel('x');ylabel('y');zlabel('u');
subplot(1,3,2)
mesh(X,Y,Accurate');
title('the image of Accurate solution')
xlabel('x');ylabel('y');zlabel('U');
subplot(1,3,3)
mesh(X,Y,(Numerical-Accurate)');
title('the image of error solution')
xlabel('x');ylabel('y');zlabel('error');
toc;

效果图:

Matlab:五点差分方法求解椭圆方程非导数边值问题的更多相关文章

  1. Matlab:Crank Nicolson方法求解线性抛物方程

    tic; clear clc M=[,,,,,,];%x的步数 K=M; %时间t的步数 :length(M) hx=/M(p); ht=/K(p); r=ht/hx^; %网格比 x=:hx:; t ...

  2. Matlab:椭圆方程的导数边值问题

    tic; clear clc N=; M=*N; h1=/M; h2=/N; x=:h1:; y=:h2:; fun=inline('exp(x)*sin(pi*y)','x','y'); f=inl ...

  3. 【matlab】MATLAB程序调试方法和过程

    3.8  MATLAB程序的调试和优化 在MATLAB的程序调试过程中,不仅要求程序能够满足设计者的设计需求,而且还要求程序调试能够优化程序的性能,这样使得程序调试有时比程序设计更为复杂.MATLAB ...

  4. Complete the sequence! POJ - 1398 差分方法找数列规律

    参考链接:http://rchardx.is-programmer.com/posts/16142.html vj题目链接:https://vjudge.net/contest/273000#stat ...

  5. FESTUNG — 3. 采用 HDG 方法求解对流问题

    FESTUNG - 3. 采用 HDG 方法求解对流问题[1] 1. 控制方程 线性对流问题控制方程为 \[\begin{array}{ll} \partial_t c + \nabla \cdot ...

  6. 彻底理解了call()方法,apply()方法和bind()方法

    javascript中的每一个作用域中都有一个this对象,它代表的是调用函数的对象.在全局作用域中,this代表的是全局对象(在web浏览器中指的是window).如果包含this的函数是一个对象的 ...

  7. C语言多种方法求解字符串编辑距离问题的代码

    把做工程过程经常用的内容记录起来,如下内容段是关于C语言多种方法求解字符串编辑距离问题的内容. { if(xbeg > xend) { if(ybeg > yend) return 0; ...

  8. 三种初步简易的方法求解数值问题 of C++

    1. “二分法解方程” 在二分法中,从区间[a,b]开始,用函数值f(a)与f(b)拥有相反的符号.如果f在这个区间连续,则f的图像至少在x=a,x=b之间穿越x轴一次,因此方程f(x)=0在[a,b ...

  9. Minimum_Window_Substring两种方法求解

    题目描述: Given a string S and a string T, find the minimum window in S which will contain all the chara ...

随机推荐

  1. JS基本事件(小记)

    一.    事件的概念种类及作用(一)    概念:通常鼠标或热键的动作我们称之为事件(event),热键引发的一连串程序的动作,称之为事件驱动(event Driver).而对事件进行处理的程序或函 ...

  2. input[type = 'date']标签。

    1.首先调用浏览器自带时间控件,input的type属性有以下几种写法: type=’date’ //显示年.月.日 type=‘month’//显示年.月 type=‘week’//显示年.周 ty ...

  3. 读取excel日期数据问题

    1.企业导入数据,遇到日期数据, excel中显示日期格式正常 2009/3/13, 结果利用npoi读出来的竟然是 13-3月-2009,特别奇葩. so把excel中的日期数据统一成文本.利用Te ...

  4. day11 python之函数装饰器

    一,什么是装饰器? 装饰器本质上就是一个python函数,他可以让其他函数在不需要做任何代码变动的前提下,增加额外的功能,装饰器的返回值也是一个函数对象. 装饰器的应用场景:比如插入日志,性能测试,事 ...

  5. npm报错处理

    在npm install 命令下载的时候经常会出现下面的报错: 解决办法: npm cache clean --force npm install

  6. 【python】python嵌套循环内层循环只执行一次

    今天写了一个两个基因集找相同的基因然后输出这么个小程序就无论如何也跑不起来,原因出在循环嵌套上,这方面之前就出过问题,后来阴差阳错的就好了我也没太注意,但是最近这个问题严重制约了工作效率,我决心找到问 ...

  7. Mysql 集合链接查询

    MySQL NULL 值处理 需求:我们已经知道MySQL使用 SQL SELECT 命令及 WHERE 子句来读取数据表中的数据,但是当提供的查询条件字段为 NULL 时,该命令可能就无法正常工作. ...

  8. 对比Python中_,__,xx__xx

      对比Python中_,__,xx__xx _ 的含义 不应该在类的外面访问,也不会被from M import * 导入. Python中不存在真正的私有方法.为了实现类似于c++中私有方法,可以 ...

  9. while 运算符 初始编码 python2和python3的区别

    1.while 循环 2.运算符 3.初始编码 4.python2 和python3的区别 1.while循环: 关键词:while[循环]         break[跳出循环]         c ...

  10. 剑指offer(5)用两个栈实现队列

    题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 题目分析 栈是先进后出,队列是先进先出,因此两个栈,一个用来push,一个用来pop,同时注意下两个栈不 ...