GDT临时分段

GDT临时段说明

现在已经进入了保护模式, 目前的改变

  • 可以访问1M以上的内存了
  • 可以使用32位的指令操作

问题:

由于以前的是实式下段寄存器寻址方式无法使用了,我们必须切换到使用GDT段方式来寻址

首要的任务就是先建立一个临时的GDT段,以便我们接下来的指令操作

目前准备建立3个段,如下:

Base, Limit, Attr

代码段:0x00000000, 0xfffff, 1100_1001_1010B = db 0x0000ffff, 0x00cf9a00

数据段:0x00000000, 0xfffff, 1100_1001_0010B = db 0x0000ffff, 0x00cf9200

vga显卡内存数据段:x000b8000, 0x07fff, 1100_1001_0010B

GDT解析宏

首先创建一个nasm宏,可以进行GDT解析

参数为GDT的Base, Limit, Attr,也就是段基址(32位),段界限(20位),段描述符(12位),然后生成GDT在内存中的数据

;---------------------------------------------------------
; 描述符
; usage: Gdt_Descriptor Base, Limit, Attr : 段基址(32位),段界限(20位),段描述符(12位)
; Base: dd
; Limit: dd (low 20 bits available)
; Attr: dw (lower 4 bits of higher byte are always 0)
;---------------------------------------------------------
%macro Gdt_Descriptor 3
dw %2 & 0xFFFF
dw %1 & 0xFFFF
db (%1 >> 16) & 0xFF
db %3 & 0xFF
db ((%3 >> 4 ) & 0xF0 ) | ((%2 >> 16) & 0x0F )
db (%1 >> 24) & 0xFF
%endmacro

GDT 描述符属性定义

;--------------   gdt描述符属性  -------------
DESC_G_4K equ 1000_0000_0000b
DESC_D_32 equ 0100_0000_0000b
DESC_L equ 0000_0000_0000b ; 64位代码标记,此处标记为0便可。
DESC_AVL equ 0000_0000_0000b ; cpu不用此位,暂置为0
DESC_P equ 0000_1000_0000b
DESC_DPL_0 equ 000_0000b
DESC_DPL_1 equ 010_0000b
DESC_DPL_2 equ 100_0000b
DESC_DPL_3 equ 110_0000b
DESC_S_CODE equ 1_0000b
DESC_S_DATA equ 1_0000b
DESC_S_SYS equ 0_0000b
DESC_TYPE_CODE equ 1010b ;x=1可执行代码段,c=0普通,r=1可读,a=0已访问位a清0
DESC_TYPE_DATA equ 0010b ;x=0数据段,e=0向高位扩展,w=1可写,a=0已访问位a清0. ;-------------- 选择子属性 ---------------
RPL0 equ 00b
RPL1 equ 01b
RPL2 equ 10b
RPL3 equ 11b
TI_GDT equ 000b
TI_LDT equ 100b DESC_CODE equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL0 + DESC_S_CODE + DESC_TYPE_CODE
DESC_DATA equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL0 + DESC_S_DATA + DESC_TYPE_DATA

定义GDT全局描述符表

;---------------------------------
;定义GDT全局描述符表
;code: 0x0000ffff, 0x00cf9a00
;data: 0x0000ffff, 0x00cf9200
;vga:
Gdt_Addr:
dw 8*4-1 ;指定段上限为4(GDT全局描述符表的大小)
dd gdt_table_addr ;GDT全局描述符表的地址
Gdt_Table_Addr:
Gdt_Descriptor 0,0,0
Label_Sel_Code: Gdt_Descriptor 0x00000000, 0xfffff, DESC_CODE ;可以执行的段
Label_Sel_Data: Gdt_Descriptor 0x00000000, 0xfffff, DESC_DATA ;可以读写的段
Label_Sel_VGA: Gdt_Descriptor 0x000b8000, 0x07fff, DESC_DATA ;vga段
dw 0 ;--------------------------------
;选择子
Selector_Code equ Label_Sel_Code - Gdt_Table_Addr
Selector_Data equ Label_Sel_Data - Gdt_Table_Addr
Selector_VGA equ Label_Sel_VGA - Gdt_Table_Addr

加载gdt

;---------------------------
;加载GDT
lgdt [Gdt_Addr]

代码

创建常量头文件

创建 boot.inc文件。用来配置常量

;---------------------------------------------------------
; 描述符
; usage: Gdt_Descriptor Base, Limit, Attr : 段基址(32位),段界限(20位),段描述符(12位)
; Base: dd
; Limit: dd (low 20 bits available)
; Attr: dw (lower 4 bits of higher byte are always 0)
;---------------------------------------------------------
%macro Gdt_Descriptor 3
dw %2 & 0xFFFF
dw %1 & 0xFFFF
db (%1 >> 16) & 0xFF
db %3 & 0xFF
db ((%3 >> 4 ) & 0xF0 ) | ((%2 >> 16) & 0x0F )
db (%1 >> 24) & 0xFF
%endmacro ;-------------- gdt描述符属性 -------------
DESC_G_4K equ 1000_0000_0000b
DESC_D_32 equ 0100_0000_0000b
DESC_L equ 0000_0000_0000b ; 64位代码标记,此处标记为0便可。
DESC_AVL equ 0000_0000_0000b ; cpu不用此位,暂置为0
DESC_P equ 0000_1000_0000b
DESC_DPL_0 equ 000_0000b
DESC_DPL_1 equ 010_0000b
DESC_DPL_2 equ 100_0000b
DESC_DPL_3 equ 110_0000b
DESC_S_CODE equ 1_0000b
DESC_S_DATA equ 1_0000b
DESC_S_SYS equ 0_0000b
DESC_TYPE_CODE equ 1010b ;x=1可执行代码段,c=0普通,r=1可读,a=0已访问位a清0
DESC_TYPE_DATA equ 0010b ;x=0数据段,e=0向高位扩展,w=1可写,a=0已访问位a清0. ;-------------- 选择子属性 ---------------
RPL0 equ 00b
RPL1 equ 01b
RPL2 equ 10b
RPL3 equ 11b
TI_GDT equ 000b
TI_LDT equ 100b DESC_CODE equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL_0 + DESC_S_CODE + DESC_TYPE_CODE
DESC_DATA equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL_0 + DESC_S_DATA + DESC_TYPE_DATA ;----------- loader const ------------------
LOADER_SECTOR_LBA equ 0x1 ;第2个逻辑扇区开始
LOADER_SECTOR_COUNT equ 9 ;读取9个扇区
LOADER_BASE_ADDR equ 0x9000 ;内存地址0x9200
LOADER1_BASE_ADDR equ 0x9800 ;内存地址0x9200
;-------------------------------------------

loader.asm文件

;ratsos
;TAB=4 %include "boot/boot.inc"
section loader vstart=LOADER_BASE_ADDR ;指明程序的偏移的基地址 [bits 16] jmp Entry; ;---------------------------------
;定义GDT全局描述符表
;code: 0x0000ffff, 0x00cf9a00
;data: 0x0000ffff, 0x00cf9200
;vga:
Gdt_Addr:
dw 8*4-1 ;指定段上限为4(GDT全局描述符表的大小)
dd gdt_table_addr ;GDT全局描述符表的地址
Gdt_Table_Addr:
Gdt_Descriptor 0,0,0
Label_Sel_Code: Gdt_Descriptor 0x00000000, 0xfffff, DESC_CODE ;可以执行的段
Label_Sel_Data: Gdt_Descriptor 0x00000000, 0xfffff, DESC_DATA ;可以读写的段
Label_Sel_VGA: Gdt_Descriptor 0x000b8000, 0x07fff, DESC_DATA ;vga段
dw 0 ;--------------------------------
;选择子
Selector_Code equ Label_Sel_Code - Gdt_Table_Addr
Selector_Data equ Label_Sel_Data - Gdt_Table_Addr
Selector_VGA equ Label_Sel_VGA - Gdt_Table_Addr ;程序核心内容
Entry: ;------------------
;禁止CPU级别的中断,进入保护模式时没有建立中断表
cli ;------------------
;打开A20
in al,0x92
or al,0000_0010B ;设置第1位为1
out 0x92,al ;------------------
;加载GDT
lgdt [Gdt_Addr] ;------------------
;进入保护模式
mov eax,cr0
or eax,0x1 ;设置第0位为1
mov cr0,eax jmp $

测试

使用bochs执行

打好断点后,执行并查看gtd描述符数据是否正确。

info gdt

GDT临时分段的更多相关文章

  1. [自制简单操作系统] 2、鼠标及键盘中断处理事件[PIC\GDT\IDT\FIFO]

    1.大致介绍: >_<" 大致执行顺序是:ipl10.nas->asmhead.nas->bootpack.c PS: 这里bootpack.c要调用graphic. ...

  2. MIT 6.828 | JOS | 关于虚拟空间和物理空间的总结

    Question: 做lab过程中越来越迷糊,为什么一会儿虚拟地址是4G 物理地址也是4G ,那这有什么作用呢? 解决途径: 停下来,根据当前lab的进展,再回头看上学期操作系统的ppt & ...

  3. ocp 1Z0-043 131-205题解析

    131. Which three methods can you use to run an Automatic Database Diagnostic Monitor (ADDM) analysis ...

  4. 本地管理表空间(LMT)与自动段空间管理(ASSM)概念

    创建表空间时,extent management local 定义本地管理表空间(LMT),segment space management auto 定义自动段空间管理(ASSM). extent ...

  5. 操作系统篇-分段机制与GDT|LDT

    || 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.前言     在<操作系统篇-浅谈实模式与保护模式>中提到了两种模式,我们说在操作系统中,其实大部分时间是待在保护模式中的. ...

  6. [fw]GDT是在分段中為了相容real mode 跟 protected mode的產物

    在Protected Mode下,一个重要的必不可少的数据结构就是GDT(Global Descriptor Table). 为什么要有GDT?我们首先考虑一下在Real Mode下的编程模型: 在R ...

  7. (转)GDT与LDT

    网址:http://blog.csdn.net/billpig/article/details/5833980 保护模式下的段寄存器 由 16位的选择器 与 64位的段描述符寄存器 构成段描述符寄存器 ...

  8. Linux的分段和分页机制

    1.分段机制 80386的两种工作模式  80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 分段机制  在保护模式下,80386虚地址空间可达16K个段,每 ...

  9. Linux内存寻址之分段机制

    前言 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识. ...

随机推荐

  1. 25个SSH命令

    OpenSSH是SSH连接工具的免费版本.telnet,rlogin和ftp用户可能还没意识到他们在互联网上传输的密码是未加密的,但SSH是加密的,OpenSSH加密所有通信(包括密码),有效消除了窃 ...

  2. xshell 利用密钥登录

    第一步:新建用户密钥 第二步:选择加密方式,密钥长度越长越安全 第三步:设置密钥名称和密码(密码可为0,这里是密钥的密码非服务器密码) 第四步:保存公钥到本地 第五步:导出私钥到本地 第六步:将公钥和 ...

  3. 基于ABP模块组件与依赖注入组件的项目插件开发

    注意,阅读本文,需要先阅读以下两篇文章,并且对依赖注入有一定的基础. 模块系统:http://www.cnblogs.com/mienreal/p/4537522.html 依赖注入:http://w ...

  4. Jmeter接口测试+压力测试+环境配置+证书导出

    jmeter是apache公司基于java开发的一款开源压力测试工具,体积小,功能全,使用方便,是一个比较轻量级的测试工具,使用起来非常简单.因为jmeter是java开发的,所以运行的时候必须先要安 ...

  5. 【只要有ENA千万别用NCBI】拆分SRA文件,通过SRAtoolkits

    只要有ENA千万别用NCBI!!!! 最近开始分析网上Download的数据,一开始用人家现成的GWAS数据,后来觉得反正自己的数据到手该做的也是要做的,出来混早晚是要还的,所以就开始从头分析一些SR ...

  6. 简单的sql server->bs或cs数据交互模式

    主要记录工作当中遇到的一些问题和总结的一些经验 客户端请求-->web服务接口-->sql 语句执行(存储在数据库中)-->web服务(客户端通过调用web服务接口)-->返回 ...

  7. js生成的cookie在yii2中获取不到的解决办法

    在js中创建的cookie,默认用yii2中自带的方法Yii::$app->request->cookies->get('abc')获取不到,而用$_COOKIE['abc']又是能 ...

  8. [C++ Primer Plus] 第3章、处理数据(一)程序清单

    一.程序清单3.1(变量的一些知识点) #include<iostream> #include<climits> using namespace std; void main( ...

  9. git分散式版本管理系统,从安装到基本使用

    首先,当然是安装git了,不用寻思,官网下载即可 https://git-scm.com/downloads 第二是设置账户,鼠标右键,选择git bush,在命令窗口中进行设置 git config ...

  10. DAY11 函数(二)

    一.函数的对象 1.1定义:函数名就是存放了函数的内存地址,存放了内存地址的变量都是对象,即 函数名 就是 函数对象 1.2函数对象的应用 1 可以直接被引用 fn = cp_fn def fn(): ...