GDT临时分段
GDT临时分段
GDT临时段说明
现在已经进入了保护模式, 目前的改变
- 可以访问1M以上的内存了
- 可以使用32位的指令操作
问题:
由于以前的是实式下段寄存器寻址方式无法使用了,我们必须切换到使用GDT段方式来寻址
首要的任务就是先建立一个临时的GDT段,以便我们接下来的指令操作
目前准备建立3个段,如下:
Base, Limit, Attr
代码段:0x00000000, 0xfffff, 1100_1001_1010B = db 0x0000ffff, 0x00cf9a00
数据段:0x00000000, 0xfffff, 1100_1001_0010B = db 0x0000ffff, 0x00cf9200
vga显卡内存数据段:x000b8000, 0x07fff, 1100_1001_0010B
GDT解析宏
首先创建一个nasm宏,可以进行GDT解析
参数为GDT的Base, Limit, Attr,也就是段基址(32位),段界限(20位),段描述符(12位),然后生成GDT在内存中的数据
;---------------------------------------------------------
; 描述符
; usage: Gdt_Descriptor Base, Limit, Attr : 段基址(32位),段界限(20位),段描述符(12位)
; Base: dd
; Limit: dd (low 20 bits available)
; Attr: dw (lower 4 bits of higher byte are always 0)
;---------------------------------------------------------
%macro Gdt_Descriptor 3
dw %2 & 0xFFFF
dw %1 & 0xFFFF
db (%1 >> 16) & 0xFF
db %3 & 0xFF
db ((%3 >> 4 ) & 0xF0 ) | ((%2 >> 16) & 0x0F )
db (%1 >> 24) & 0xFF
%endmacro
GDT 描述符属性定义
;-------------- gdt描述符属性 -------------
DESC_G_4K equ 1000_0000_0000b
DESC_D_32 equ 0100_0000_0000b
DESC_L equ 0000_0000_0000b ; 64位代码标记,此处标记为0便可。
DESC_AVL equ 0000_0000_0000b ; cpu不用此位,暂置为0
DESC_P equ 0000_1000_0000b
DESC_DPL_0 equ 000_0000b
DESC_DPL_1 equ 010_0000b
DESC_DPL_2 equ 100_0000b
DESC_DPL_3 equ 110_0000b
DESC_S_CODE equ 1_0000b
DESC_S_DATA equ 1_0000b
DESC_S_SYS equ 0_0000b
DESC_TYPE_CODE equ 1010b ;x=1可执行代码段,c=0普通,r=1可读,a=0已访问位a清0
DESC_TYPE_DATA equ 0010b ;x=0数据段,e=0向高位扩展,w=1可写,a=0已访问位a清0.
;-------------- 选择子属性 ---------------
RPL0 equ 00b
RPL1 equ 01b
RPL2 equ 10b
RPL3 equ 11b
TI_GDT equ 000b
TI_LDT equ 100b
DESC_CODE equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL0 + DESC_S_CODE + DESC_TYPE_CODE
DESC_DATA equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL0 + DESC_S_DATA + DESC_TYPE_DATA
定义GDT全局描述符表
;---------------------------------
;定义GDT全局描述符表
;code: 0x0000ffff, 0x00cf9a00
;data: 0x0000ffff, 0x00cf9200
;vga:
Gdt_Addr:
dw 8*4-1 ;指定段上限为4(GDT全局描述符表的大小)
dd gdt_table_addr ;GDT全局描述符表的地址
Gdt_Table_Addr:
Gdt_Descriptor 0,0,0
Label_Sel_Code: Gdt_Descriptor 0x00000000, 0xfffff, DESC_CODE ;可以执行的段
Label_Sel_Data: Gdt_Descriptor 0x00000000, 0xfffff, DESC_DATA ;可以读写的段
Label_Sel_VGA: Gdt_Descriptor 0x000b8000, 0x07fff, DESC_DATA ;vga段
dw 0
;--------------------------------
;选择子
Selector_Code equ Label_Sel_Code - Gdt_Table_Addr
Selector_Data equ Label_Sel_Data - Gdt_Table_Addr
Selector_VGA equ Label_Sel_VGA - Gdt_Table_Addr
加载gdt
;---------------------------
;加载GDT
lgdt [Gdt_Addr]
代码
创建常量头文件
创建 boot.inc文件。用来配置常量
;---------------------------------------------------------
; 描述符
; usage: Gdt_Descriptor Base, Limit, Attr : 段基址(32位),段界限(20位),段描述符(12位)
; Base: dd
; Limit: dd (low 20 bits available)
; Attr: dw (lower 4 bits of higher byte are always 0)
;---------------------------------------------------------
%macro Gdt_Descriptor 3
dw %2 & 0xFFFF
dw %1 & 0xFFFF
db (%1 >> 16) & 0xFF
db %3 & 0xFF
db ((%3 >> 4 ) & 0xF0 ) | ((%2 >> 16) & 0x0F )
db (%1 >> 24) & 0xFF
%endmacro
;-------------- gdt描述符属性 -------------
DESC_G_4K equ 1000_0000_0000b
DESC_D_32 equ 0100_0000_0000b
DESC_L equ 0000_0000_0000b ; 64位代码标记,此处标记为0便可。
DESC_AVL equ 0000_0000_0000b ; cpu不用此位,暂置为0
DESC_P equ 0000_1000_0000b
DESC_DPL_0 equ 000_0000b
DESC_DPL_1 equ 010_0000b
DESC_DPL_2 equ 100_0000b
DESC_DPL_3 equ 110_0000b
DESC_S_CODE equ 1_0000b
DESC_S_DATA equ 1_0000b
DESC_S_SYS equ 0_0000b
DESC_TYPE_CODE equ 1010b ;x=1可执行代码段,c=0普通,r=1可读,a=0已访问位a清0
DESC_TYPE_DATA equ 0010b ;x=0数据段,e=0向高位扩展,w=1可写,a=0已访问位a清0.
;-------------- 选择子属性 ---------------
RPL0 equ 00b
RPL1 equ 01b
RPL2 equ 10b
RPL3 equ 11b
TI_GDT equ 000b
TI_LDT equ 100b
DESC_CODE equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL_0 + DESC_S_CODE + DESC_TYPE_CODE
DESC_DATA equ DESC_G_4K + DESC_D_32 + DESC_L + DESC_AVL + DESC_P + DESC_DPL_0 + DESC_S_DATA + DESC_TYPE_DATA
;----------- loader const ------------------
LOADER_SECTOR_LBA equ 0x1 ;第2个逻辑扇区开始
LOADER_SECTOR_COUNT equ 9 ;读取9个扇区
LOADER_BASE_ADDR equ 0x9000 ;内存地址0x9200
LOADER1_BASE_ADDR equ 0x9800 ;内存地址0x9200
;-------------------------------------------
loader.asm文件
;ratsos
;TAB=4
%include "boot/boot.inc"
section loader vstart=LOADER_BASE_ADDR ;指明程序的偏移的基地址
[bits 16]
jmp Entry;
;---------------------------------
;定义GDT全局描述符表
;code: 0x0000ffff, 0x00cf9a00
;data: 0x0000ffff, 0x00cf9200
;vga:
Gdt_Addr:
dw 8*4-1 ;指定段上限为4(GDT全局描述符表的大小)
dd gdt_table_addr ;GDT全局描述符表的地址
Gdt_Table_Addr:
Gdt_Descriptor 0,0,0
Label_Sel_Code: Gdt_Descriptor 0x00000000, 0xfffff, DESC_CODE ;可以执行的段
Label_Sel_Data: Gdt_Descriptor 0x00000000, 0xfffff, DESC_DATA ;可以读写的段
Label_Sel_VGA: Gdt_Descriptor 0x000b8000, 0x07fff, DESC_DATA ;vga段
dw 0
;--------------------------------
;选择子
Selector_Code equ Label_Sel_Code - Gdt_Table_Addr
Selector_Data equ Label_Sel_Data - Gdt_Table_Addr
Selector_VGA equ Label_Sel_VGA - Gdt_Table_Addr
;程序核心内容
Entry:
;------------------
;禁止CPU级别的中断,进入保护模式时没有建立中断表
cli
;------------------
;打开A20
in al,0x92
or al,0000_0010B ;设置第1位为1
out 0x92,al
;------------------
;加载GDT
lgdt [Gdt_Addr]
;------------------
;进入保护模式
mov eax,cr0
or eax,0x1 ;设置第0位为1
mov cr0,eax
jmp $
测试
使用bochs执行
打好断点后,执行并查看gtd描述符数据是否正确。
info gdt
GDT临时分段的更多相关文章
- [自制简单操作系统] 2、鼠标及键盘中断处理事件[PIC\GDT\IDT\FIFO]
1.大致介绍: >_<" 大致执行顺序是:ipl10.nas->asmhead.nas->bootpack.c PS: 这里bootpack.c要调用graphic. ...
- MIT 6.828 | JOS | 关于虚拟空间和物理空间的总结
Question: 做lab过程中越来越迷糊,为什么一会儿虚拟地址是4G 物理地址也是4G ,那这有什么作用呢? 解决途径: 停下来,根据当前lab的进展,再回头看上学期操作系统的ppt & ...
- ocp 1Z0-043 131-205题解析
131. Which three methods can you use to run an Automatic Database Diagnostic Monitor (ADDM) analysis ...
- 本地管理表空间(LMT)与自动段空间管理(ASSM)概念
创建表空间时,extent management local 定义本地管理表空间(LMT),segment space management auto 定义自动段空间管理(ASSM). extent ...
- 操作系统篇-分段机制与GDT|LDT
|| 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.前言 在<操作系统篇-浅谈实模式与保护模式>中提到了两种模式,我们说在操作系统中,其实大部分时间是待在保护模式中的. ...
- [fw]GDT是在分段中為了相容real mode 跟 protected mode的產物
在Protected Mode下,一个重要的必不可少的数据结构就是GDT(Global Descriptor Table). 为什么要有GDT?我们首先考虑一下在Real Mode下的编程模型: 在R ...
- (转)GDT与LDT
网址:http://blog.csdn.net/billpig/article/details/5833980 保护模式下的段寄存器 由 16位的选择器 与 64位的段描述符寄存器 构成段描述符寄存器 ...
- Linux的分段和分页机制
1.分段机制 80386的两种工作模式 80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 分段机制 在保护模式下,80386虚地址空间可达16K个段,每 ...
- Linux内存寻址之分段机制
前言 最近在学习Linux内核,读到<深入理解Linux内核>的内存寻址一章.原本以为自己对分段分页机制已经理解了,结果发现其实是一知半解.于是,查找了很多资料,最终理顺了内存寻址的知识. ...
随机推荐
- python_函数式编程
函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式).在面向过程编程中,我们见到过函数(function):在面向对象编程中,我们见过对象(object).函数和对象的根本目的是以 ...
- php .htaccess 伪静态
# #以下是网站伪静态正则 # RewriteEngine On RewriteRule ^index.html$ index.php RewriteRule ^about.html$ about.p ...
- 在 python3.x中安装 Crypto 库
1.安装:直接找过来 whl 安装:链接: https://pan.baidu.com/s/1zXjzchnqc1GgSWT9TjHDaA 提取码: dzbn 复制这段内容后打开百度网盘手机App,操 ...
- SQL SEVER 的基本请求指令
SQL分类:DDL--数据定义语言(create,alter,drop,declare) DML--数据操纵语言(select,delete,update,insert) DCL--数据控制语言(gr ...
- springboot使用hibernate validator校验
一.参数校验 在开发中经常需要写一些字段校验的代码,比如字段非空,字段长度限制,邮箱格式验证等等,写这些与业务逻辑关系不大的代码个人感觉有两个麻烦: 验证代码繁琐,重复劳动 方法内代码显得冗长 每次要 ...
- git分散式版本管理系统,从安装到基本使用
首先,当然是安装git了,不用寻思,官网下载即可 https://git-scm.com/downloads 第二是设置账户,鼠标右键,选择git bush,在命令窗口中进行设置 git config ...
- git的一些补充点
git rm和 rm的区别 git rm是删除文件, 同时加入到git的跟踪管理中,做一个登记,那么在git commit的时候, 会把这次删除作为一次修改提交上去, 否则, 在 git log中你就 ...
- 【Entity Framework】Model First Approach
EF中的model first 所谓mf, 就是使用vs提供的edm designer去设计model,然后将设计好的model使用vs在指定的数据库中生成数据库即可. 当你的项目既没有数据库也没有c ...
- 8th,常用模块、正则表达式
re模块 什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则.内嵌在Python中,通过re模块实现.正则表达式模 ...
- WebApi 运行原理
1.当请求过来时,首先经过Global 下面的Application_start()方法,在这个方法中注册了WebApiConfig.Register 2.WebApiConfig.Register把 ...