ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)
似乎好久都没写博客了....赶快来补一篇
题意
给你一个 \(n\) 个点 , 没有重边和自环的图 .
有 \(m\) 条边 , 每条边可以染 \(1 \to k\) 中的一种颜色 .
对于任意一个简单环 , 可以将它的边的颜色进行旋转任意位 .
询问本质不同的染色方案数个数 .
数据范围
\(1\le n \le 50, 1 \le m \le 100,1 \le k \le 100\\\)
题解
将边 (或者说是很多条边) 分为 \(3\) 种类型 :
不属于任何一个简单环 , 它的贡献为 \(k\) .
属于且仅属于一个简单环 (除了环上的边没边了) , 设环长为 \(n\) . 它的贡献就是
\]
这个就是类似于项链染色的方案数求解 , 原因见 此篇博客 .
属于多个环 (或者说是构成了的环 , 除了环上的边还有其他边) . 能够证明可以通过旋转来交换任意两条边的颜色 .
于是本质不同当且仅当有一种颜色数量不同 , 那计算的话 , 就是利用隔板法 把 \(m\) 条边 分成 \(k\) 组的方案数 (每组不一定要有边)那么我们肖就加入多的 \(k - 1\) 个隔板 , 然后贡献很显然就是$${n + k - 1 \choose k - 1}$$
这个全都可以利用 \(Tarjan\) 求点双联通分量 (求割点的方法) 来判断种类 , 并在其中计算 , 把所有贡献乘起来就是最后的答案了.
时间复杂度就是 \(O(n+m)\) 轻松通过此题.
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar() ) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar() ) x = (x << 1) + (x << 3) + (ch ^ '0');
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("F.in", "r", stdin);
freopen ("F.out", "w", stdout);
#endif
}
const int N = 55, M = 205;
typedef long long ll;
const ll Mod = 1e9 + 7;
ll fpm(ll x, int power) {
ll res = 1;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
}
ll fac[M], ifac[M];
void Init(int maxn) {
fac[0] = ifac[0] = 1ll;
For (i, 1, maxn) fac[i] = fac[i - 1] * i % Mod;
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1) % Mod;
}
ll C(int m, int n) {
if (m > n || n < 0 || m < 0) return 0ll;
return fac[n] * ifac[m] % Mod * ifac[n - m] % Mod;
}
set <int> Point;
int n, m, k; ll ans = 1ll;
ll Polya(int n) {
ll res = 0;
For (i, 1, n) (res += fpm(k, __gcd(n, i))) %= Mod;
return res * fpm(n, Mod - 2) % Mod;
}
ll Permu(int m) { return C(k - 1, m + k - 1); }
vector<int> G[N];
int dfn[N], lowlink[N], sta[N], top;
void Tarjan(int u, int fa) {
static int clk = 0;
dfn[u] = lowlink[u] = (++ clk); sta[++ top] = u;
for (int v : G[u]) if (!dfn[v]) {
Tarjan(v, u), chkmin(lowlink[u], lowlink[v]);
if (lowlink[v] >= dfn[u]) {
Point.clear();
int n = 0, m = 0, Last;
do Point.insert(Last = sta[top --]), ++ n; while (Last != v);
Point.insert(u), ++ n;
for (int x : Point) for (int v : G[x])
if ((bool)Point.count(v)) ++ m;
m >>= 1;
if (m < n) (ans *= k) %= Mod;
if (m == n) (ans *= Polya(n)) %= Mod;
if (m > n) (ans *= Permu(m)) %= Mod;
}
} else chkmin(lowlink[u], dfn[v]);
if (!fa) -- top;
}
int main () {
File();
n = read(), m = read(); k = read();
Init(m + k + 5);
For (i, 1, m) {
int u = read(), v = read();
G[u].push_back(v);
G[v].push_back(u);
}
For (i, 1, n) if (!dfn[i]) Tarjan(i, 0);
printf ("%lld\n", ans);
return 0;
}
ARC062 - F. Painting Graphs with AtCoDeer (Polya+点双联通分量)的更多相关文章
- ARC 062 F - Painting Graphs with AtCoDeer 割点 割边 不动点 burnside引理
LINK:Painting Graphs with AtCoDeer 看英文题面果然有点吃不消 一些细节会被忽略掉. 问每条边都要被染色 且一个环上边的颜色可以旋转. 用c种颜色有多少本质不同的方法. ...
- [Arc062] Painting Graphs with AtCoDeer
[Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...
- 【ARC062F】 Painting Graphs with AtCoDeer 点双连通分量+polya定理
Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色. 你可以对一张染色了的图进行若干次操作,每次操作形如,在图中选择一个简单环(即不经过相同点的环),并且将其颜色逆时针 ...
- 2018.09.20 atcoder Painting Graphs with AtCoDeer(tarjan+polya)
传送门 一道思维题. 如果没有环那么对答案有k的贡献. 如果恰为一个环,可以用polya求贡献. 如果是一个有多个环重叠的双联通的话,直接转化为组合数问题(可以证明只要每种颜色被选取的次数相同一定可以 ...
- AtcoderARC062F Painting Graphs with AtCoDeer 【双连通分量】【polya原理】
题目分析: 如果一个双连通分量是简单环,那么用polya原理计数循环移位即可. 如果一个双连通分量不是简单环,那么它必然可以两两互换,不信你可以证明一下相邻的可以互换. 如果一条边是桥,那么直接乘以k ...
- 【AtCoder】ARC062F - AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer
题解 考虑一个点双(因为是简单环),如果没有环(两点一线),那么乘上K 如果有一个环,那么用polya定理,每个置换圈有gcd(i,n)个循环节 如果有两个及以上的环,任何一种置换都合法,那么只和每个 ...
- ARC062F AtCoDeerくんとグラフ色塗り / Painting Graphs with AtCoDeer Burnside 引理
题目传送门 https://atcoder.jp/contests/arc062/tasks/arc062_d 题解 首先对整张图做 Tarjan 点双. 对于一个点双,如果是由一条边构成的,那么很显 ...
- [ARC062F]Painting Graphs with AtCoDeer
题意:一个无向图,用$k$种不同的颜色给每条边染色,问能染出多少种不同的图,如果两张图能通过循环移位环边使得颜色相同,那么这两张图被认为是相同的 数学太差伤不起啊...补了一下Burnside定理的证 ...
- [atARC062F]Painting Graphs with AtCoDeer
求出点双后缩点,对于点双之间,显然不存在简单环,即每一个简单环一定在一个点双内部,换言之即每一个点双可以独立的考虑,然后将结果相乘 (对于点双之间的边任意染色,即若有$s$条边,还会有$k^{s}$的 ...
随机推荐
- 02-Centos7安装部署Mirrorgate
1.以Docker方式运行 MirrorGate服务器作为docker镜像提供,因此要运行它只需在终端中执行以下命令: 注意mongo镜像要使用3.6版本,其他版本会提示版本问题. #Spinup m ...
- 【vue】chrome已安装Vue Devtools在控制台却无显示
chrome已安装Vue Devtools在控制台却无显示的解决: 在点亮Vue Devtools图标后,控制台没有vue解读显示. 原因:脚手架配置NODE_ENV直接定义为了production版 ...
- android 环境的配置
经过了长达好几天的她探索,一直出现各种问题,然后,也是一个一个的解决,但最后,解决烦了,就觉得重新开始配置android的环境了. 原来一直都是版本的问题,因为我之前下载的都是2014的版本,而这个版 ...
- Spring Cloud 入门教程(十):和RabbitMQ的整合 -- 消息总线Spring Cloud Netflix Bus
在本教程第三讲Spring Cloud 入门教程(三): 配置自动刷新中,通过POST方式向客户端发送/refresh请求, 可以让客户端获取到配置的最新变化.但试想一下, 在分布式系统中,如果存在很 ...
- Ceph分布式存储集群-硬件选择
在规划Ceph分布式存储集群环境的时候,对硬件的选择很重要,这关乎整个Ceph集群的性能,下面梳理到一些硬件的选择标准,可供参考: 1)CPU选择Ceph metadata server会动态的重新分 ...
- 分布式监控系统Zabbix-3.0.3-完整安装记录(3)-监控nginx,php,memcache,Low-level discovery磁盘IO
前段时间在公司IDC服务器上部署了zabbix3.0.3监控系统,除了自带的内存/带宽/CPU负载等系统资源监控模板以及mysql监控模板外,接下来对诸如nginx.php.memcache.磁盘IO ...
- zabbix监控交换机、防火墙等网络设备
zabbix3.4.4监控交换机/防火墙是非简单,只需知道交换机/防火墙的snmp密码,然后连接下自带或导入的snmp模板,就可以完成监控了.比如添加地址为172.10.11.5的交换机监控. 1)登 ...
- WinForm多线程+委托防止界面假死
当有大量数据需要计算.显示在界面或者调用sleep函数时,容易导致界面卡死,可以采用多线程加委托的方法解决 using System; using System.Collections.Generic ...
- python-深浅copy-18
# 赋值运算l1 = [1,2,3]l2 = l1l1.append('a')print(l1,l2) # [1, 2, 3, 'a'] [1, 2, 3, 'a'] #copyl1 = [1,2,3 ...
- 20135337——Linux实践三:程序破解
程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...