MT【18】幂平均不等式的证明
评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深
刻的认识.
MT【18】幂平均不等式的证明的更多相关文章
- MT【39】构造二次函数证明
这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二 ...
- LTE引理——解决数论竞赛题的利器
LTE (Lifting The Exponent Lemma)引理是一个解指数型不定方程的强力工具.它在Olympiad folklore非常知名,虽然它的起源已经无从查找了.它和Hensel’s ...
- MT【190】绝对值的和
(2012浙江压轴题)已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.1)证明:当$0\le x\le 1$时,i)函数$f(x)$的最大值为$|2a-b|+a;$i ...
- 证明 O(n/1+n/2+…+n/n)=O(nlogn)
前言 在算法中,经常需要用到一种与调和级数有关的方法求解,在分析该方法的复杂度时,我们会经常得到\(O(\frac{n}{1}+\frac{n}{2}+\ldots+\frac{n}{n})\)的复杂 ...
- 算法题----称硬币: 2n(并不要求n是2的幂次方)个硬币,有两个硬币重量为m+1, m-1, 其余都是m 分治 O(lgn)找出假币
Description: 有2n个硬币和一个天平,其中有一个质量是m+1, 另一个硬币质量为m-1, 其余的硬币质量都是m. 要求:O(lgn)时间找出两枚假币 注意: n不一定是2的幂次方 算法1: ...
- 《A First Course in Probability》-chaper8-极限定理-各类不等式
詹森不等式: 证明:
- 《A First Course in Probability》-chaper8-极限定理-切比雪夫不等式
基于对概率问题的抽象化,通过期望.方差.随机变量X及其概率,我们想要通过几个量推出另外几个量的特征,笼统的来说,极限定理起到的作用便在于此 切比雪夫不等式: 在证明切比雪夫不等式之前,我们先要完成对马 ...
- Markov不等式,Chebyshev不等式
在切诺夫界的证明中用到了Markov不等式,证明于此~顺便把Chebyshev不等式也写上了
- 从Jensen不等式到Minkowski不等式
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...
随机推荐
- 基于TDA4863-2的单级PFC反激LED电源设计与仿真
LED是一个非线性器件,正向电压的微小变化会引起电流的巨大变化:LED是一个半导体二极管,其伏安特性随温度变化而变化(-2mV/℃),假如温度升高,在恒压驱动下LED的电流会增加.长期超过额定电流工作 ...
- 3.3《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)——less即more
Unix提供了两个工具查看不止文件的头部和尾部.这个功能程序叫做more,但有种更强大的变异体叫做less(起初我认为这是玩笑).less这个程序是交互性地,所以很难在输出时捕获,但是仍然为大家提供了 ...
- Luogu4546 THUWC2017 在美妙的数学王国中畅游 LCT、泰勒展开
传送门 题意:反正就是一堆操作 LCT总是和玄学东西放在一起我们不妨令$x_0=0.5$(其实取什么都是一样的,但是最好取在$[0,1]$的范围内),将其代入给出的式子,我们得到的$f(x)$的式子就 ...
- Luogu1084 NOIP2012D2T3 疫情控制 二分答案、搜索、贪心、倍增
题目传送门 题意太长就不给了 发现答案具有单调性(额外的时间不会对答案造成影响),故考虑二分答案. 贪心地想,在二分了一个时间之后,军队尽量往上走更好.所以我们预处理倍增数组,在二分时间之后通过倍增看 ...
- WPF 任务栏背景闪烁提醒
原文:WPF 任务栏图标闪烁提醒 public static class FlashWindow { [DllImport("user32.dll")] [return: Ma ...
- 11.11 开课二个月零七天(ajax和bootstrp做弹窗)
1.用ajax做弹窗显示信息详情 nation.php <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&qu ...
- Elasticsearch Query DSL 整理总结(四)—— Multi Match Query
目录 引言 概要 fields 字段 通配符 提升字段权重 multi_match查询的类型 best_fields 类型 dis_max 分离最大化查询 best_fields 维权使者 tie_b ...
- .Net架构篇:思考如何设计一款实用的分布式监控系统?
前言 无论从最早期的unix操作系统,还是曾经大行其道的单体式应用,还是现在日益流行的微服务架构,始终都离不开监控的身影.如windows的任务管理器,linux的top命令,都可以看作是监控的面板. ...
- Zabbix监控系统部署:前端初始化
1. 概述 在上一篇博客<Zabbix监控系统部署:源码安装.md>中,主要进行了zabbix最新版的源码编译安装. (博客园地址:https://www.cnblogs.com/liwa ...
- Ionic 入门与实战之第一章:Ionic 介绍与相关学习资源
原文发表于我的技术博客 本文是「Ionic 入门与实战」系列连载的第一章,主要对 Ionic 的概念.发展历程.适配的移动平台等知识进行了介绍,并分享了 Ionic 相关的学习资源. 原文发表于我的技 ...