PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (i=1,⋯,N) where each Ci is the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S1−>⋯−>Sp. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = , inf = ;
int cmax, n, sp, m;
int g[maxn][maxn], c[maxn] = { };
vector<int> pre[maxn];
int d[maxn];
bool vis[maxn];
void dijkstra(int s) {
fill(vis, vis + maxn, false);
fill(d, d + maxn, inf);
d[s] = ;
for (int i = ; i <= n; i++) {
int u = -, min = inf;
for (int j = ; j < n; j++) {
if (vis[j] == false && d[j] < min) {
min = d[j];
u = j;
}
}
if (u == -) return;
vis[u] = true;
for (int v = ; v <= n; v++) {
if (vis[v] == false && g[u][v]!=inf) {
if (d[v] > d[u] + g[u][v]) {
d[v] = d[u] + g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if (d[v] == d[u] + g[u][v]) {
pre[v].push_back(u);
}
}
}
}
}
vector<int> shortpath, temppath;
int min_c = inf, min_t = inf;
void dfs(int v) {
if (v == ) {
temppath.push_back(v);
int s;
int carry = , take = ;
for (int i = temppath.size() - ; i >= ;i--) {
s = temppath[i];
if (cmax / < c[s]) {
take += c[s] - (cmax / );
}
else {
carry = carry + max(, cmax / - c[s] - take);
take = max(, take - (cmax / - c[s]));
}
}
if (carry < min_c || (carry==min_c && take<min_t)) {
min_c = carry;
shortpath = temppath;
min_t = take;
}
temppath.pop_back();
return;
}
temppath.push_back(v);
for (int i = ; i < pre[v].size(); i++) {
dfs(pre[v][i]);
}
temppath.pop_back();
}
int main() {
cin >> cmax >> n >> sp >> m;
for (int i = ; i <= n; i++) {
scanf("%d", &c[i]);
}
fill(g[], g[] + maxn * maxn, inf);
for (int i = ; i < m; i++) {
int c1, c2, w;
scanf("%d %d %d", &c1, &c2, &w);
g[c1][c2] = w;
g[c2][c1] = w;
}
dijkstra();
dfs(sp);
printf("%d ", min_c);
for (int i = shortpath.size() - ; i > ; i--) {
printf("%d->", shortpath[i]);
}
printf("%d %d\n",shortpath[], min_t); system("pause");
return ;
}
注意点:还是一道逻辑看似简单的题,考察一个多尺度最短路径。知道用dijkstra+dfs的方法最方便,就是死不相信想只用dijkstra做出来,发现真的不行,当带的车一样多时,最后带回来的车要最少,这个光用dijkstra是算不出来的,因为中间要尽可能多的带车出来,但最后要最少,如果中间带少的车出来,最后需要带的车又会太多。还是老老实实用dijkstra+dfs最方便。一定要把这个模板记住熟练了!
PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS的更多相关文章
- PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)
1018 Public Bike Management (30 分) There is a public bike service in Hangzhou City which provides ...
- 1018 Public Bike Management (30 分)
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- 1018 Public Bike Management (30分) 思路分析 + 满分代码
题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...
- 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs
前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...
- 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)
题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...
- [PAT] A1018 Public Bike Management
[思路] 题目生词 figure n. 数字 v. 认为,认定:计算:是……重要部分 The stations are represented by vertices and the roads co ...
- 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)
思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...
- PAT 1018 Public Bike Management[难]
链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018 Public ...
- PAT 1018 Public Bike Management(Dijkstra 最短路)
1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
随机推荐
- 报错No active profile set, falling back to default profiles
pom.xml加上下面两个依赖 <dependency> <groupId>org.springframework.boot</groupId> <artif ...
- SSL连接并非完全问题解决
教程所示图片使用的是 github 仓库图片,网速过慢的朋友请移步>>> (原文)SSL 连接并非完全安全问题解决. 更多讨论或者错误提交,也请移步. 最近拿到了 TrustAsia ...
- css兼容问题(一)
开头语:不用就忘,还是自己乖乖的记笔记吧! 正文开始: (一)如果你的页面对IE7兼容没有问题,又不想大量修改现有代码,同时又能在IE8中正常使用,微软声称,开发商仅需要在目前兼容IE7的网站上 ...
- ngx-echart地图
一.运行截图 二.代码 html代码: <div style="padding:24px;"> <p style="font-size: 16px;ma ...
- twindows下omcat8安装后,不能启动服务
原因可能是cmd安装时,不是以管理员的身份运行cmd命令的.解决办法,以管理员身份运行cmd,进入tomcat安装/解压的bin目录下,先执行 service.bat remove 命令卸载服务,之后 ...
- 在Centos下面FTP映射方案
前两天公司要在一台Centos的机子上,把一些文件定时备份到另外一台ftp服务器上, 在Linux系统中,mount是不支持直接挂在"ftp://192.168.1.1/backup&quo ...
- Linux 学习笔记之超详细基础linux命令 Part 1
Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 说明:主要是在REHL Server 6操作系统下进行的测试 --字符界面虚拟终端与图形界面之间的切 方法:[ ...
- Android开发专业名词及工具概述
前言: 系统的学习下Android开发中涉及到的一些专业名词 和Android开发工具 名词: 一.SDK(Software Development Kit) 软件开发工具包:一般都是一些软件工程师为 ...
- Sqlserver精简安装选项
- MySQL——优化嵌套查询和分页查询
优化嵌套查询 嵌套查询(子查询)可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中.嵌套查询写起来简单,也容易理解.但是,有时候可以被更有效率的连接(JOIN ...