1896 互不侵犯 洛谷 luogu
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入输出格式
输入格式:
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N
输出格式:
所得的方案数
------------------------------------------------------------------------------
懵
#include<iostream>
#include<cstdio>
using namespace std;
int n,k;
long long dp[][][]; //dp[i][j][k]表示第i行,状态为j,前面摆了k个国王时,方案数;
long long state[] , king[] ;//state[]是当前状态,king[]是当前行的国王数;
long long ans , sum;//ans是用来记录状态总数的,sum是用来计算一共有多少种方案的; inline void inte()
{
int tot = (<<n) - ;//最多到这个时候,就是二进制下,每一位上都放上国王,当然有不行的,为了方便下文排除;
for(int i = ; i <= tot ; i++)
if(!((i<<)&i)) //因为要互不侵犯,所以,两个国王之间必须隔一个,这是判断是否满足题意国王之间不相互攻击;
{
state[++ans] = i; //找到了满足的,记录这个状态;
int t = i;
while(t) //判断这个状态有多少个国王,也就是t在二进制下有多少个1;
{
king[ans] += t%;
t>>=; //记住,是右移一位,和 t/=2 一样,就是稍微快一点;
}
}
} int main()
{
cin>>n>>k; //数据;
inte(); //初始化;
for(int i = ; i <= ans ; i++) //先处理第一行;
if(king[i] <= k) //一行的国王数一定不能超过总数;
dp[][i][king[i]] = ; for(int i = ; i <= n ; i++) //处理剩下的,所以从 2 开始枚举;
for(int j = ; j <= ans ; j++) //枚举状态;
for(int p = ; p <= ans ; p++) //再一遍状态,用来当作上一行的状态,因为 我们由上向下递推,能迎上本行的,只有上一行;
{
//这里就不在赘述了,和处理第一行同理,但是不同的是这里处理相邻的行,
if(state[j] & state[p]) continue; //所以,上下相邻不行
if(state[j] & (state[p]<<)) continue; //本行的右上角不能有国王;
if((state[j]<<) & state[p]) continue; //左上角也不行;
for(int s = ; s <= k ; s++)
{
//s表示本行以上用了多少国王; //满足条件后,还要记得国王数量是有限的!!
if(king[j] + s > k) continue; //我们是递推,所以本行以上一定处理完了,所以,本行加以前用过的国王,总数不能超过限定;
dp[i][j][king[j]+s] += dp[i-][p][s]; //还记得dp[i][j][k]中的k表示已经用过的国王数,而king[]是本行的,s是本行以前的;
}
} for(int i = ; i <= n ; i++) //因为不确定在哪一行用光国王,所以都枚举一遍;
for(int j = ; j <= ans ; j++)
sum += dp[i][j][k]; //本行及以前用光了国王,那么方案数加在总数中; cout<<sum;
return ; }
1896 互不侵犯 洛谷 luogu的更多相关文章
- P1654 OSU!-洛谷luogu
传送门 题目背景 原 <产品排序> 参见P2577 题目描述 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败 ...
- 【原创】洛谷 LUOGU P3366 【模板】最小生成树
P3366 [模板]最小生成树 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N ...
- 【原创】洛谷 LUOGU P3371 【模板】单源最短路径
P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...
- 【原创】洛谷 LUOGU P3373 【模板】线段树2
P3373 [模板]线段树 2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第 ...
- 【原创】洛谷 LUOGU P3372 【模板】线段树1
P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...
- P1440 求m区间内的最小值--洛谷luogu
题目描述 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的数不足m项则从第1个数开始,若前面没有数则输出0. 输入输出格式 输入格式: 第一行两个 ...
- P2251 质量检测--洛谷luogu
传送门 题目描述 为了检测生产流水线上总共N件产品的质量,我们首先给每一件产品打一个分数A表示其品质,然后统计前M件产品中质量最差的产品的分值Q[m] = min{A1, A2, ... Am},以及 ...
- P4550 收集邮票-洛谷luogu
传送门 题目描述 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢 ...
- P3200 [HNOI2009]有趣的数列--洛谷luogu
---恢复内容开始--- 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3& ...
随机推荐
- Redis实现分布式锁的正确使用方式(java版本)
Redis实现分布式锁的正确使用方式(java版本) 本文使用第三方开源组件Jedis实现Redis客户端,且只考虑Redis服务端单机部署的场景. 分布式锁一般有三种实现方式: 1. 数据库乐观锁: ...
- Hash table: why size should be prime?
Question: Possible Duplicate:Why should hash functions use a prime number modulus? Why is it necessa ...
- php soapclient 超时 设置
用php的soapclient,默认是60秒.可在php.ini里配置, 重启APache 或者在PHP代码里做设置 ini_set('default_socket_timeout', 300);// ...
- H5新标签(适合新手入门)
H5新标签 文档类型设定 document HTML: sublime 输入 html:4s XHTML: sublime 输入 html:xt HTML5 sublime 输入 html:5 < ...
- 在vue配置sass
先npm两个插件 npm install sass-loader --save-dev npm install node-sass --save-dev 然后在webpack当中配置 { test: ...
- 去除git版本控制
命令:find . -name ".git" | xargs rm –Rf linux $ find . -type d -iname '__pycache__' -exec rm ...
- Android FileUtils 文件操作类
系统路径 Context.getPackageName(); // 用于获取APP的所在包目录 Context.getPackageCodePath(); //来获得当前应用程序对应的apk文件的路径 ...
- Android-滑动解锁高亮文字自定义TextView
public class HightLightTextView extends TextView { // 存储view的宽度 private int mTextViewWidth = 0; // 画 ...
- (网页)java中Collections.sort排序详解(转)
转自CSDN: Comparator是个接口,可重写compare()及equals()这两个方法,用于比价功能:如果是null的话,就是使用元素的默认顺序,如a,b,c,d,e,f,g,就是a,b, ...
- 05-sudo权限配置
阅读目录 基础环境准备 服务端配置 客户端配置 客户端验证 附:sudo常见属性介绍 常见错误分析 1. 基础环境准备 本文接文章openldap服务端安装配置 2. 服务端配置 导入sudo sch ...