#-*- coding: utf-8 -*-
#构建并测试CART决策树模型 import pandas as pd #导入数据分析库
from random import shuffle #导入随机函数shuffle,用来打乱数据
import matplotlib.pyplot as plt #导入Matplotlib datafile = '../data/model.xls' #数据名
data = pd.read_excel(datafile) #读取数据,数据的前三列是特征,第四列是标签
#print(data)
# 电量趋势下降指标 线损指标 告警类指标 是否窃漏电
# 0 4 1 1 1
# 1 4 0 4 1
# 2 2 1 1 1
# 3 9 0 0 0
data = data.as_matrix() #将表格转换为矩阵
#print(data)
# [[4 1 1 1]
# [4 0 4 1]
# [2 1 1 1]
shuffle(data) #随机打乱数据 p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p),:] #前80%为训练集
test = data[int(len(data)*p):,:] #后20%为测试集 #构建CART决策树模型
from sklearn.tree import DecisionTreeClassifier #导入决策树模型 treefile = '../tmp/tree.pkl' #模型输出名字
tree = DecisionTreeClassifier() #建立决策树模型
tree.fit(train[:,:3], train[:,3]) #训练 #保存模型
from sklearn.externals import joblib
joblib.dump(tree, treefile) # from cm_plot import * #导入自行编写的混淆矩阵可视化函数
# cm_plot(train[:,3], tree.predict(train[:,:3])).show() #显示混淆矩阵可视化结果
#注意到Scikit-Learn使用predict方法直接给出预测结果。 from sklearn.metrics import roc_curve #导入ROC曲线函数 fpr, tpr, thresholds = roc_curve(test[:,3], tree.predict_proba(test[:,:3])[:,1], pos_label=1)
plt.plot(fpr, tpr, linewidth=2, label = 'ROC of CART', color = 'green') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0,1.05) #边界范围
plt.xlim(0,1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果

as_matrix、保存训练模型的更多相关文章

  1. tensorflow 保存训练模型ckpt 查看ckpt文件中的变量名和对应值

    TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如 ...

  2. Tensorflow 保存和载入训练过程

    本节涉及点: 保存训练过程 载入保存的训练过程并继续训练 通过命令行参数控制是否强制重新开始训练 训练过程中的手动保存 保存训练过程前,程序征得同意 一.保存训练过程 以下方代码为例: import ...

  3. JS做深度学习2——导入训练模型

    JS做深度学习2--导入训练模型 改进项目 前段时间,我做了个RNN预测金融数据的毕业设计(华尔街),当时TensorFlow.js还没有发布,我不得已使用了keras对数据进行了训练,并且拟合好了不 ...

  4. Keras 学习之旅(一)

    软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...

  5. 用TensorFlow教你手写字识别

    博主原文链接:用TensorFlow教你做手写字识别(准确率94.09%) 如需转载,请备注出处及链接,谢谢. 2012 年,Alex Krizhevsky, Geoff Hinton, and Il ...

  6. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  7. 初识spark的MLP模型

    初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...

  8. 用Keras搞一个阅读理解机器人

    catalogue . 训练集 . 数据预处理 . 神经网络模型设计(对话集 <-> 问题集) . 神经网络模型设计(问题集 <-> 回答集) . RNN神经网络 . 训练 . ...

  9. TensorFlow下利用MNIST训练模型识别手写数字

    本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...

随机推荐

  1. Python package和module

    package,即包,可以把功能相近的module(模块)组织在一起,以便更好地管理.Java中也有包的概念,作用类似,是为了更好地管理类和接口.package,说白了就是个目录,不过这个目录下一定要 ...

  2. FreeRTOS任务函数

    FreeRTOS的任务函数原型如下:void ATaskFunction(void *pvParameters); void ATaskFunction(*pvParameters){;; //函数可 ...

  3. day86

    视图组件 基于以往我们所用的视图函数,我们发现其中冗余的代码比较多,今天就来对其进行封装,争取做一个代码洁癖者 原来我们的视图函数: class Book(APIView): def get(self ...

  4. 如何把js的代码写的更加容易维护(一)--面向对象编程

    总是头疼javascript的代码写起来不可维护,那么看看下面的代码: (function (w, $) { var app = { init: function () { var me = this ...

  5. kubectl客户端工具远程连接k8s集群

    一.概述 一般情况下,在k8smaster节点上集群管理工具kubectl是连接的本地http8080端口和apiserver进行通讯的,当然也可以通过https端口进行通讯前提是要生成证书.所以说k ...

  6. 算法相关——Java排序算法之冒泡排序(二)

    0. 前言 本系列文章将介绍一些常用的排序算法.排序是一个非常常见的应用场景,也是开发岗位面试必问的一道面试题,有人说,如果一个企业招聘开发人员的题目中没有排序算法题,那说明这个企业不是一个" ...

  7. Luogu P1337 [JSOI2004]平衡点 / 吊打XXX

    一道入门模拟退火的经典题,还是很考验RP的 首先我们发现神TM这道题又和物理扯上了关系,其实是一道求广义费马点的题目 首先我们可以根据物理知识得到,当系统处于平衡状态时,系统的总能量最小 又此时系统的 ...

  8. [JDBC]你真的会正确关闭connection吗?

    Connection conn = null; PreparedStatement stmt = null; ResultSet rs = null; try { conn = DriverManag ...

  9. Xamarin开发的一个简单画图程序分享

    最近Xamarin比较火,于是稍微看了下,感觉接触过MVC的都应该能很快上手,还挺有意思,于是忍不住写了个简单的画图程序,之前看帖子有人说装不上或者无法部署,估计我比较幸运,编译完了一次就安装成功了, ...

  10. 个人博客地址: furur.xyz

    趁着Hexo的热度,最近就买了域名,在GitHub Pages上搭了个人博客.也不是说博客园不好吧,毕竟在博客园三年多,也学到了不少东西,唯一要吐槽的,估计也就是后台管理不方便,markdown无即时 ...