在我们做题中,搜索也好,动态规划也好,我们往往有时候需要用一个数字表示一种状态

比如有8个灯泡排成一排,如果你用0和1表示灯泡的发光情况

那么一排灯泡就可以转换为一个二进制数字了

比如

01100110 = 102

11110000 = 240

10101010 = 170

通过这些十进制数,只要把他们展开,我们就知道灯泡的状态了

如果这题是一个动态规划题

然后我们就拿这些数字做一些转移了,

比如dp[102],dp[240],dp[170]等等

这对题目很有帮助

上面讲的那些就是所谓的状态压缩了,须知详细的状态压缩可以去百度

或者有机会我自己去写一篇博客(这是flag(/TДT)/)

那对于有些题,我们即使状态压缩后,数字太大,数组都开不下,麻烦的题目(/TДT)/

这些题目也要看情况,比如我接下来要讲的康托展开

康托展开经典题:hdu 1430

http://acm.hdu.edu.cn/showproblem.php?pid=1430

在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示。任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,具体操作方法如下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。

Input
每组测试数据包括两行,分别代表魔板的初态与目态。
 
Output
对每组测试数据输出满足题意的变换步骤。
 
Sample Input
12345678
17245368
12345678
82754631
 
Sample Output
C
AC

我们看这题,总共有8个数字,1~8,假如我们把他们看成0~7

那么每个数字可以转换为一个3位二进制

0:000

1:001

2:010

3:011

4:100

5:101

6:110

7:111

然后12345678这个状态我们可以表示为二进制000001010011100101110111,总共3*8=24位,

2^24 = 16777216,数组根本开不下啊

这时,我们发现了,有一些状态,根本没有用到,因为这题已经规定了有8个数字,每个数字只出现一次

比如000000000000000000000000这个状态,你说可能出现吗?(o ° ω ° O )

这个时候,康托就对这种题目做了研究(o ° ω ° O )

这种每个数字只出现一次的问题的所以情况,总共才n!个情况(这个问题叫做全排列)

康托的一套算法可以正好产生n!个数字

比如:

123  ->  0

132  ->  1

213  ->  2

231  ->  3

312  ->  4

321  ->  5

这是如何做到的(/≥▽≤/)

在峰神的博客里面有很好的解释(对不起了峰神≖‿≖✧,拿过来抄一下)

(/≥▽≤/)好神奇

于是乎,康托展开模板:

 void cantor(int s[], LL num, int k){//康托展开,把一个数字num展开成一个数组s,k是数组长度
int t;
bool h[k];//0到k-1,表示是否出现过
memset(h, , sizeof(h));
for(int i = ; i < k; i ++){
t = num / fac[k-i-];
num = num % fac[k-i-];
for(int j = , pos = ; ; j ++, pos ++){
if(h[pos]) j --;
if(j == t){
h[pos] = true;
s[i] = pos + ;
break;
}
}
}
}
void inv_cantor(int s[], LL &num, int k){//康托逆展开,把一个数组s换算成一个数字num
int cnt;
num = ;
for(int i = ; i < k; i ++){
cnt = ;
for(int j = i + ; j < k; j ++){
if(s[i] > s[j]) cnt ++;//判断几个数小于它
}
num += fac[k-i-] * cnt;
}
}

付上AC代码:

(这代码我在杭电上用c++交竟然CE了,g++就没问题,CE的内容是我的那个模板,说什么不能bool h[k]这样声明类型,c++小心眼,这有什么关系嘛(´・ω・)ノ,我还只是个孩子)

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long LL;
const int N = ;
queue <LL> que;
string ans[];
char str1[], str2[];
bool vis[]; int map[];//映射
int num[]; LL fac[N];//阶乘
void change(int s[], int o){//o分别是0,1,2,表示ABC三种变化
switch(o){
case :
for(int i = ; i < ; i ++) swap(s[i], s[-i-]);
break;
case :
for(int i = ; i >= ; i --) swap(s[i], s[i-]);
for(int i = ; i < ; i ++) swap(s[i], s[i+]);
break;
case :
swap(s[], s[]);
swap(s[], s[]);
swap(s[], s[]);
break;
}
}
void cantor(int s[], LL num, int k){//康托展开,把一个数字num展开成一个数组s,k是数组长度
int t;
bool h[k];//0到k-1,表示是否出现过
memset(h, , sizeof(h));
for(int i = ; i < k; i ++){
t = num / fac[k-i-];
num = num % fac[k-i-];
for(int j = , pos = ; ; j ++, pos ++){
if(h[pos]) j --;
if(j == t){
h[pos] = true;
s[i] = pos + ;
break;
}
}
}
}
void inv_cantor(int s[], LL &num, int k){//康托逆展开,把一个数组s换算成一个数字num
int cnt;
num = ;
for(int i = ; i < k; i ++){
cnt = ;
for(int j = i + ; j < k; j ++){
if(s[i] > s[j]) cnt ++;//判断几个数小于它
}
num += fac[k-i-] * cnt;
}
}
void init(){
fac[] = ;
for(int i = ; i < N; i ++) fac[i] = fac[i-] * i;
int a[], b[];
LL temp, temp2;
que.push();
vis[] = true;
while(!que.empty()){
LL temp = que.front(); que.pop();
cantor(a, temp, );
for(int i = ; i < ; i ++){
copy(a, a+, b);
change(b, i);
inv_cantor(b, temp2, );
if(!vis[temp2]){
que.push(temp2);
vis[temp2] = true;
ans[temp2] = ans[temp] + (char)('A' + i);
}
}
}
}
int main(){
init();
while(~scanf("%s", str1)){
scanf("%s", str2);
//先把所有初始状态都转换成12345678
//最终状态根据初始状态的转换而转换
//这样只要一次预处理就可以解决问题了
for(int i = ; i < ; i ++) map[str1[i] - ''] = i + ;
for(int i = ; i < ; i ++) num[i] = map[str2[i] - ''];
LL temp;
inv_cantor(num, temp, );
cout << ans[temp] << endl;
}
}

宇宙我来啦~\(≧▽≦)/~

ACM数论之旅12---康托展开((*゚▽゚*)装甲展开,主推进器启动,倒计时3,2,1......)的更多相关文章

  1. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  2. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  3. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  4. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  5. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  6. ACM数论之旅16---母函数(又名生成函数)(痛并快乐着(╭ ̄3 ̄)╭)

    (前排出售零食瓜子) 前言: 母函数是个很难的东西,难在数学 而ACM中所用的母函数只是母函数的基础 应该说除了不好理解外,其他都是非常简单的 母函数即生成函数,是组合数学中尤其是计数方面的一个重要理 ...

  7. ACM数论之旅11---浅谈指数与对数(长篇)(今天休息,不学太难的数论> 3<)

    c/c++语言中,关于指数,对数的函数我也就知道那么多 exp(),pow(),sqrt(),log(),log10(), exp(x)就是计算e的x次方,sqrt(x)就是对x开根号 pow()函数 ...

  8. ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)

    中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 7个7个分剩2个 问这个物品有多少个 解这题,我们需要构造一个答案 我们需要构造这 ...

  9. ACM数论之旅13---容斥原理(一切都是命运石之门的选择(=゚ω゚)ノ)

    容斥原理我初中就听老师说过了,不知道你们有没有听过(/≧▽≦)/ 百度百科说: 在计数时,必须注意没有重复,没有遗漏. 为了使重叠部分不被重复计算,人们研究出一种新的计数方法. 这种方法的基本思想是: ...

随机推荐

  1. 如何在Spring MVC Test中避免”Circular view path” 异常(转)

    文章转自http://www.cnblogs.com/chry/p/6240965.html 1. 问题的现象 比如在webConfig中定义了一个viewResolver public class ...

  2. 深入浅出的webpack4构建工具---比mock模拟数据更简单的方式(二十一)

    如果想要了解mock模拟数据的话,请看这篇文章(https://www.cnblogs.com/tugenhua0707/p/9813122.html) 在实际应用场景中,总感觉mock数据比较麻烦, ...

  3. <<linux device driver,third edition>> Chapter 4:Debugging Techniques

    Debugging by Printing printk lets you classify messages accoring to their severity by associating di ...

  4. 【USACO 2019 Feburary Contest】Gold

    模拟二月金组,三个半小时AK. USACO 2019 Feburary Contest, Gold T1 题意:给定一棵树,每个点有点权,每次可以进行以下操作之一: 更改一个点的点权 求某条路径上的点 ...

  5. C#位运算实际运用

    前言 前几天写了一篇关于c#位操作,c#位运算基本概念与计算过程 最后提到一个实际问题 需求:C# 用两个short,一个int32拼成一个long型 要求:现在有两个short和一个int,需要拼成 ...

  6. C++模板的特化

    C++类模板的三种特化,讲得比较全面 By SmartPtr(http://www.cppblog.com/SmartPtr/) 针对一个模板参数的类模板特化的几种类型, 一是特化为绝对类型(全特化) ...

  7. odoo之页面跳转

    击备注时,会由备注id带出他的内容 customer.requirement这是备注内容表 def sale_requirements_change(self, cr, uid, ids, requi ...

  8. python---pandas.merge使用

    merge 函数参数 ”’ merge: 合并数据集, 通过left, right确定连接字段,默认是两个数据集相同的字段 参数 说明 left 参与合并的左侧DataFrame right 参与合并 ...

  9. linux shell的here document用法

    转载自: http://my.oschina.net/u/1032146/blog/146941 什么是Here Document?Here Document 是在Linux Shell 中的一种特殊 ...

  10. [转]The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path

    完整错误信息: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS"AS IS" AND ANY ...