(转)Awesome Human Pose Estimation
Awesome Human Pose Estimation
2018-10-08 11:02:35
Copied from: https://github.com/cbsudux/awesome-human-pose-estimation
A collection of resources on Human Pose Estimation.
Why awesome human pose estimation?
This is a collection of papers and resources I curated when learning the ropes in Human Pose estimation. I will be continuously updating this list with the latest papers and resources. If you want some theory on Human Pose Estimation, check out Human Pose Estimation 101
Contributing
If you think I have missed out on something (or) have any suggestions (papers, implementations and other resources), feel free to pull a request
Feedback and contributions are welcome!
Table of Contents
Basics
Papers
2D Pose estimation
- Learning Human Pose Estimation Features with Convolutional Networks - Jain, A., Tompson, J., Andriluka, M., Taylor, G.W., & Bregler, C. (ICLR 2013)
- DeepPose: Human Pose Estimation via Deep Neural Networks - Toshev, A., & Szegedy, C. (CVPR 2014)
- Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation - [CODE] - Tompson, J., Jain, A., LeCun, Y., & Bregler, C. (NIPS 2014)
- MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation - Jain, A., Tompson, J., LeCun, Y., & Bregler, C. (ACCV 2014)
- Efficient Object Localization Using Convolutional Networks - Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C (CVPR 2015)
- Flowing ConvNets for Human Pose Estimation in Videos - [CODE] - Pfister, T., Charles, J., & Zisserman, A. (ICCV 2015)
- Convolutional Pose Machines - [CODE] - Wei, S., Ramakrishna, V., Kanade, T., & Sheikh, Y. (CVPR 2016)
- Human Pose Estimation with Iterative Error Feedback- [CODE] Carreira, J., Agrawal, P., Fragkiadaki, K., & Malik, J. (CVPR 2016)
- DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation - [CODE] - Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P.V., & Schiele, B. (CVPR 2016)
- DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model - [CODE1][CODE2] - Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (ECCV 2016)
- Stacked Hourglass Networks for Human Pose Estimation - [CODE] - Newell, A., Yang, K., & Deng, J. (ECCV 2016)
- Multi-context Attention for Human Pose Estimation - [CODE] - Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., & Wang, X. (CVPR 2017)
- Towards Accurate Multi-person Pose Estimation in the Wild - [CODE] - Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C., & Murphy, K.P. (CVPR 2017)
- Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields - [CODE] - Cao, Z., Simon, T., Wei, S., & Sheikh, Y. (CVPR 2017)
- Learning Feature Pyramids for Human Pose Estimation - [CODE] - Yang, W., Li, S., Ouyang, W., Li, H., & Wang, X. (ICCV 2017)
- Human Pose Estimation Using Global and Local Normalization - Sun, K., Lan, C., Xing, J., Zeng, W., Liu, D., & Wang, J. (ICCV 2017)
- Adversarial PoseNet: A Structure-Aware Convolutional Network for Human Pose Estimation - Chen, Y., Shen, C., Wei, X., Liu, L., & Yang, J. (ICCV 2017)
- RMPE: Regional Multi-person Pose Estimation - [CODE1][CODE2] - Fang, H., Xie, S., & Lu, C. (ICCV 2017)
- Self Adversarial Training for Human Pose Estimation - [CODE1][CODE2] - Chou, C., Chien, J., & Chen, H. (ArXiv 2017)
- Recurrent Human Pose Estimation - [CODE] - Belagiannis, V., & Zisserman, A. (FG 2017)
- Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation - [CODE] Ning, G., Zhang, Z., & He, Z. (IEEE Transactions on Multimedia 2018)
- Human Pose Estimation with Parsing Induced Learner- Xuecheng Nie, Jiashi Feng, Yiming Zuo, Shuicheng Yan (CVPR 2018)
- LSTM Pose Machines - [CODE] - Yue Luo, Jimmy Ren, Zhouxia Wang, Wenxiu Sun, Jinshan Pan, Jianbo Liu, Jiahao Pang, Liang Lin (CVPR 2018)
- Simple Baselines for Human Pose Estimation and Tracking - [CODE] - Bin, Xiao, Haiping Wu, Yichen Wei (ECCV 2018)
3D Pose estimation
- 3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network - Li, S., & Chan, A.B. (ACCV 2014)
- Structured Prediction of 3D Human Pose with Deep Neural Networks - Tekin, B., Katircioglu, I., Salzmann, M., Lepetit, V., & Fua, P. (BMVC 2016)
- VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera - [CODE] - Mehta, Dushyant et al. (SIGGRAPH 2017)
- Recurrent 3D Pose Sequence Machines - Lin, M., Lin, L., Liang, X., Wang, K., & Cheng, H. (CVPR 2017)
- Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image - Tomè, D., Russell, C., & Agapito, L. (CVPR 2017)
- Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose - [CODE] - Pavlakos, G., Zhou, X., Derpanis, K.G., & Daniilidis, K. (CVPR 2017)
- Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach - [CODE] - Zhou, X., Huang, Q., Sun, X., Xue, X., & Wei, Y. (ICCV 2017)
- A Simple Yet Effective Baseline for 3d Human Pose Estimation - Martinez, J., Hossain, R., Romero, J., & Little, J.J. (ICCV 2017)
- Compositional Human Pose Regression - Sun, X., Shang, J., Liang, S., & Wei, Y. (ICCV 2017)
- Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision - Mehta, D., Rhodin, H., Casas, D., Fua, P., Sotnychenko, O., Xu, W., & Theobalt, C. (3DV 2017)
- 3D Human Pose Estimation in the Wild by Adversarial Learning - Yang, W., Ouyang, W., Wang, X., Ren, J.S., Li, H., & Wang, X. (2018)
- DRPose3D: Depth Ranking in 3D Human Pose Estimation - Wang, M., Chen, X., Liu, W., Qian, C., Lin, L., & Ma, L. (IJCAI 2018)
- End-to-end Recovery of Human Shape and Pose - [CODE] - Kanazawa, A., Black, M.J., Jacobs, D.W., & Malik, J. (CVPR 2018)
- Learning to Estimate 3D Human Pose and Shape from a Single Color Image - Pavlakos, G., Zhu, L., Zhou, X., & Daniilidis, K. (CVPR 2018)
- Dense Human Pose Estimation In The Wild - [CODE] - Guler, R.A., Neverova, N., & Kokkinos, I. (ArXiv 2018)
- Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation - [CODE] - Omran, Mohamed and Lassner, Christoph and Pons-Moll, Gerard and Gehler, Peter V. and Schiele, Bernt (3DV 2018)
- Learning 3D Human Pose from Structure and Motion - Dabral, R., Mundhada, A., Kusupati, U., Afaque, S., Sharma, A., & Jain, A. (ECCV 2018)
- Integral Human Pose Regression - [CODE] - Sun, X., Xiao, B., Liang, S., & Wei, Y. (ECCV 2018)
- Dense Pose Transfer - Neverova, N., Guler, R.A., & Kokkinos, I. (ECCV 2018)
- Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation - [CODE] - Rhodin, H., Salzmann, M., & Fua, P. (ECCV 2018)
- BodyNet: Volumetric Inference of 3D Human Body Shapes - [CODE] - Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., & Schmid, C. (ECCV 2018)
Person generation
- Pose Guided Person Image Generation - [CODE] - Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., & Gool, L.V. (NIPS 2017)
- A Generative Model of People in Clothing - Lassner, C., Pons-Moll, G., & Gehler, P.V. (ICCV 2017)
- Deformable GANs for Pose-based Human Image Generation - [CODE] - Siarohin, A., Sangineto, E., Lathuilière, S., & Sebe, N. (CVPR 2018)
- Dense Pose Transfer - Neverova, N., Guler, R.A., & Kokkinos, I. (ECCV 2018)
Real-time pose estimation
- Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields - [CODE] - Cao, Z., Simon, T., Wei, S., & Sheikh, Y. (CVPR 2017)
- VNect: Real-time 3D Human Pose Estimation with a Single RGB Camera - [CODE] - Mehta, Dushyant et al. (SIGGRAPH 2017)
- RMPE: Regional Multi-person Pose Estimation - [CODE1][CODE2] - Fang, H., Xie, S., & Lu, C. (ICCV 2017)
- Dense Human Pose Estimation In The Wild - [CODE] - Guler, R.A., Neverova, N., & Kokkinos, I. (ArXiv 2018)
Datasets
2D
3D
Workshops
Blog posts
- Real-time Human Pose Estimation in the Browser with TensorFlow.js
- Deep learning for human pose estimation
- Deep Learning based Human Pose Estimation using OpenCV ( C++ / Python )
Popular implementations
PyTorch
- pytorch-pose-hg-3d
- pytorch_Realtime_Multi-Person_Pose_Estimation
- AlphaPose
- pytorch-pose
- human-pose-estimation.pytorch
TensorFlow
Torch
Others
Todo
- Add basics
- Add papers on Person Re-Identification
- Add papers on Multi Person Pose estimation
- Add a SOTA ranking
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
(转)Awesome Human Pose Estimation的更多相关文章
- 论文阅读理解 - Stacked Hourglass Networks for Human Pose Estimation
http://blog.csdn.net/zziahgf/article/details/72732220 keywords 人体姿态估计 Human Pose Estimation 给定单张RGB图 ...
- 论文笔记 Stacked Hourglass Networks for Human Pose Estimation
Stacked Hourglass Networks for Human Pose Estimation key words:人体姿态估计 Human Pose Estimation 给定单张RGB ...
- Deep High-Resolution Representation Learning for Human Pose Estimation
Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...
- Learning Feature Pyramids for Human Pose Estimation(理解)
0 - 背景 人体姿态识别是计算机视觉的基础的具有挑战性的任务,其中对于身体部位的尺度变化性是存在的一个显著挑战.虽然金字塔方法广泛应用于解决此类问题,但该方法还是没有很好的被探索,我们设计了一个Py ...
- human pose estimation
2D Pose estimation主要面临的困难:遮挡.复杂背景.光照.真实世界的复杂姿态.人的尺度不一.拍摄角度不固定等. 单人姿态估计 传统方法:基于Pictorial Structures, ...
- DensePose: Dense Human Pose Estimation In The Wild(理解)
0 - 背景 Facebook AI Research(FAIR)开源了一项将2D的RGB图像的所有人体像素实时映射到3D模型的技术(DensePose).支持户外和穿着宽松衣服的对象识别,支持多人同 ...
- 对DensePose: Dense Human Pose Estimation In The Wild的理解
研究方法 通过完全卷积学习从图像像素到密集模板网格的映射.将此任务作为一个回归问题,并利用手动注释的面部标注来训练我们的网络.使用这样的标注,在三维对象模板和输入图像之间,建立密集的对应领域,然后作为 ...
- Pose Estimation
Human Pose Estimation for Real-World Crowded Scenarios https://arxiv.org/pdf/1907.06922.pdf CrowdPos ...
- paper 154:姿态估计(Hand Pose Estimation)相关总结
Awesome Works !!!! Table of Contents Conference Papers 2017 ICCV 2017 CVPR 2017 Others 2016 ECCV 20 ...
随机推荐
- @staticmethod和classmethod
之前一直搞不清楚这两个类方法有什么区别,今天着重学习了一下 @staticmethod是静态方法,不需要表示自身对象的self和自身类的cls参数,就跟使用函数一样. class C(object): ...
- 怎样理解JAVA的“构造方法”和“主方法”
在类中除了成员方法之外,还存在一种特殊类型的方法,那就是构造方法.主方法是类的入口点,它定义了程序从何处开始: 主方法提供对程序流向的控制,Java编译器通过主方法来执行程序.那么,下面一起来看一下关 ...
- Codeforces 670 - A/B/C/D/E/F - (Done)
链接:https://codeforces.com/contest/670 A - Holidays - [水] AC代码: #include<bits/stdc++.h> using n ...
- Codeforces 1043 - A/B/C/D/E/F - (Undone)
链接:http://codeforces.com/contest/1043 A - Elections - [水水水水题] 题意: 我和另一个人竞争选举,共有 $n$ 个人投票,每个人手上有 $k$ ...
- CodeForces 570D - Tree Requests - [DFS序+二分]
题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...
- MongoDB复制集原理、环境配置及基本测试详解
一.MongoDB复制集概述 MongoDB复制集实现了冗余备份和故障转移两大功能,这样能保证数据库的高可用性.在生产环境,复制集至少包括三个节点,其中一个必须为主节点,一个从节点,一个仲裁节点.其中 ...
- mysql数据库的主从同步,实现读写分离 g
https://blog.csdn.net/qq_15092079/article/details/81672920 前言 1 分别在两台centos 7系统上安装mysql 5.7 2 master ...
- SQL两张表筛选相同数据和不同数据
原文链接:http://www.cnblogs.com/onesmail/p/6148979.html 方法一: select distinct A.ID from A where A.ID not ...
- 深入浅出--UNIX多进程编程之fork()函数
0前言 上周都在看都在学习unix环境高级编程的第八章--进程控制.也就是这一章中.让我理解了unix中一些进程的原理.以下我就主要依照进程中最重要的三个函数来进行解说.让大家通过阅读这一篇文章彻底明 ...
- python基础之 面向对象
1.什么是面向对象? 在大学学习c#的时候接触面向对象,知道好像有什么方法,属性,人狗大战啥的.但是都忘记了,也不知道面向对象到底是个啥! 在python中一切都是对象,linux中一切都是文件(突然 ...