[Data Structure] Tree - relative
Segment Tree
- First, try to build the segment tree.
- lintcode
- suggest code: Currently recursion recommended. (For coding exercise, u can just start with "Interval minimum number" below.)
"""
Definition of SegmentTreeNode:
class SegmentTreeNode:
def __init__(self, start, end):
self.start, self.end = start, end
self.left, self.right = None, None
""" class Solution:
"""
@param: start: start value.
@param: end: end value.
@return: The root of Segment Tree.
"""
def build(self, start, end):
# write your code here
if start > end:
return
root = SegmentTreeNode(start, end)
if start == end:
return root
mid = (end - start) / 2 + start
root.left = self.build(start, mid)
root.right = self.build(mid + 1, end)
return root - Edge case:
- Trees are building by pointers, so u must consider the null pointers!!!
- if start > end
- Try to know about segment tree.
- wiki
- Exactly as its name, segment tree is used to store segments.
- A segment tree is a tree for storing intervals, or segments. It allows querying which of the stored segments contains a given pionts.
- It is, in principle, a static structure; that is, it's a structure that cannot be modified once it's built.
- Complexity:
- A segment tree of a set I of n intervals uses O(nlogn) storage and can be built in O(nlogn) time.
- Segements trees support searching for all the intervals that contain a query point in O(logn + k), k being the number of retrieved intervals or segments.
- Try to use segment tree for simple query...
- Recursion recommended too. But to careful to consider all the cases, see below:
"""
Definition of SegmentTreeNode:
class SegmentTreeNode:
def __init__(self, start, end, max):
self.start, self.end, self.max = start, end, max
self.left, self.right = None, None
""" class Solution:
"""
@param: root: The root of segment tree.
@param: start: start value.
@param: end: end value.
@return: The maximum number in the interval [start, end]
"""
def query(self, root, start, end):
# write your code here
if start > end:
return
if (start <= root.start and end >= root.end):
return root.max
mid = (root.end - root.start) / 2 + root.start
if end <= mid:
return self.query(root.left, start, end)
if start > mid:
return self.query(root.right, start, end)
return max(self.query(root.left, start, mid), self.query(root.right, mid + 1, end)) - Then try to modify the tree...
Please be familiar with this way of recursion: return current val for each recursion."""
Definition of SegmentTreeNode:
class SegmentTreeNode:
def __init__(self, start, end, max):
self.start, self.end, self.max = start, end, max
self.left, self.right = None, None
""" class Solution:
"""
@param: root: The root of segment tree.
@param: index: index.
@param: value: value
@return:
"""
def modify(self, root, index, value):
# write your code here
if not root or index < root.start or index > root.end:
return
self.helper(root, index, value) def helper(self, root, index, value):
if root.start == root.end:
if root.start == index:
root.max = value
return root.max
mid = (root.end - root.start) / 2 + root.start
if index <= mid:
val = self.helper(root.left, index, value)
if root.right:
val = max(val, root.right.max)
root.max = val
else:
val = self.helper(root.right, index, value)
if root.left:
val = max(val, root.left.max)
root.max = val
return root.max
- Recursion recommended too. But to careful to consider all the cases, see below:
- Now, try some usages.
- Interval minimum number: lintcode
- This is the most representative usage of segment: do interval aggregative operation.
"""
Definition of Interval.
class Interval(object):
def __init__(self, start, end):
self.start = start
self.end = end
"""
class SegTreeNode:
def __init__(self, start, end, val):
self.start, self.end, self.val = start, end, val
self.left, self.right = None, None class Solution:
"""
@param: A: An integer array
@param: queries: An query list
@return: The result list
"""
def intervalMinNumber(self, A, queries):
# write your code here
if not A or not queries:
return []
# 1. construct a segment tree
root = self.construct_st(A, 0, len(A) - 1)
# 2. search for each query
res = []
for query in queries:
res.append(self.query_st(root, query.start, query.end))
return res def construct_st(self, nums, start, end):
if start == end:
return SegTreeNode(start, end, nums[start])
mid = (end - start) / 2 + start
left = self.construct_st(nums, start, mid)
right = self.construct_st(nums, mid + 1, end)
root = SegTreeNode(start, end, min(left.val, right.val))
root.left = left
root.right = right
return root def query_st(self, root, start, end):
if start <= root.start and end >= root.end:
return root.val
root_mid = (root.end - root.start) / 2 + root.start
if end <= root_mid:
return self.query_st(root.left, start, end)
if start > root_mid:
return self.query_st(root.right, start, end)
return min(self.query_st(root.left, start, root_mid), self.query_st(root.right, root_mid + 1, end))
- For complicated implementation, try Interval Sum II.
- Interval minimum number: lintcode
- Now, try some usage that not that obvious segment tree.
- Count of Smaller Number.
A useful thing to notice is that the value of from this array is value from 0 to 10000. So we can use a segment tree to denote [start, end, val] and val denotes how many numbers from the array is between [start, end]. class SegTreeNode:
def __init__(self, start, end, val):
self.start, self.end, self.val = start, end, val
self.left, self.right = None, None class Solution:
"""
@param: A: An integer array
@param: queries: The query list
@return: The number of element in the array that are smaller that the given integer
"""
def countOfSmallerNumber(self, A, queries):
# write your code here
if not A:
return [0 for i in range(len(queries))] # 1. construct a segment tree
dict_A = {}
for val in A:
dict_A[val] = dict_A.get(val, 0) + 1
root = self.con_st(0, 10000, dict_A)
# 2. search
res = []
for query in queries:
res.append(self.query_st(root, query))
return res def con_st(self, start, end, dict_A):
if start > end:
return
if start == end:
return SegTreeNode(start, end, dict_A.get(start, 0))
mid = (end - start) / 2 + start
left = self.con_st(start, mid, dict_A)
right = self.con_st(mid + 1, end, dict_A)
root = SegTreeNode(start, end, left.val + right.val)
root.left, root.right = left, right
return root def query_st(self, root, query):
if not root:
return 0
if query > root.end:
return root.val
if query <= root.start:
return 0
mid = (root.end - root.start) / 2 + root.start
if query > mid:
return root.left.val + self.query_st(root.right, query)
if query <= mid:
return self.query_st(root.left, query)- Then, try this: Count of smaller number before itself.
- Obivously, we can use binary search to solve this just almost the same as 'Count of smaller number'. But for this problem, it will cost O(N^2) time, for the O(N) time for insert into a list.
- But still, I tried binary search, as below:
class Solution:
"""
@param: A: an integer array
@return: A list of integers includes the index of the first number and the index of the last number
""" def countOfSmallerNumberII(self, A):
# write your code here
if not A:
return []
# binary search, O(NlogN) time(O(N^2) for insert takes O(N) each time), O(N) space
sorted_subarr = []
res = []
for val in A:
ind = self.binary_search(sorted_subarr, val)
res.append(ind)
return res def binary_search(self, sorted_subarr, val):
if not sorted_subarr:
sorted_subarr.append(val)
return 0
# 1. find the right-most number who is smaller than val
left, right = 0, len(sorted_subarr) - 1
while left < right - 1:
mid = (right - left) / 2 + left
if sorted_subarr[mid] < val:
left = mid
else:
right = mid
# 2. insert val into sorted_subarr
if sorted_subarr[right] < val:
sorted_subarr.insert(right + 1, val)
return right + 1
elif sorted_subarr[left] < val:
sorted_subarr.insert(left + 1, val)
return left + 1
else:
sorted_subarr.insert(left, val)
return left - And a better choice is using segment tree. For each val in A, we search segment tree then insert it into tree.
class SegTreeNode:
def __init__(self, start, end, val):
self.val, self.start, self.end = val, start, end
self.left, self.right = None, None class Solution:
"""
@param: A: an integer array
@return: A list of integers includes the index of the first number and the index of the last number
""" def countOfSmallerNumberII(self, A):
# write your code here
if not A:
return []
# 1. build segment tree, using O(10000log10000)
root = self.build_st(0, max(A))
# 2. search for target value then update segment tree
res = []
for val in A:
res.append(self.search_st(root, val))
self.update_st(root, val)
return res def build_st(self, start, end):
root = SegTreeNode(start, end, 0)
if start == end:
return root
mid = (end - start) / 2 + start
root.left = self.build_st(start, mid)
root.right = self.build_st(mid + 1, end)
return root def search_st(self, root, val):
if val > root.end:
return root.val
if val <= root.start:
return 0
mid = (root.end - root.start) / 2 + root.start
if val <= mid:
return self.search_st(root.left, val)
return root.left.val + self.search_st(root.right, val) def update_st(self, root, val):
root.val += 1
if root.start == root.end:
return
mid = (root.end - root.start) / 2 + root.start
if val <= mid:
self.update_st(root.left, val)
else:
self.update_st(root.right, val)
- Count of Smaller Number.
Summary of segment tree
- 线段树的每个节点表示一个区间,子节点分别表示父节点的左右半区间。
- 线段树的构建、查询和更新都可以使用递归。构建是O(NlogN) time, 查询和更新时O(logN) time,其中n是root的end - start。
- 常见应用:求区间的最大最小值、区间的sum等。
Binary Search Tree
- The definition of bst is very easy: x.left < x, x.right > x
- Range search in bst: Search Range in BST.
BST(tree)惯用套路:recursionclass Solution:
"""
@param: root: param root: The root of the binary search tree
@param: k1: An integer
@param: k2: An integer
@return: return: Return all keys that k1<=key<=k2 in ascending order
"""
def searchRange(self, root, k1, k2):
# write your code here
if not root or k1 > k2:
return []
results = []
self.helper(root, k1, k2, results)
return results def helper(self, root, start, end, results):
if not root or start > end:
return
if root.val < start:
self.helper(root.right, start, end, results)
elif root.val > end:
self.helper(root.left, start, end, results)
else:
self.helper(root.left, start, root.val, results)
results.append(root.val)
self.helper(root.right, root.val, end, results)
[Data Structure] Tree - relative的更多相关文章
- Python: tree data structure
# 树结构 from pythonds.basic.stack import Stack #pip install pythonds from pythonds.trees.binaryTree im ...
- [Algorithms] Tree Data Structure in JavaScript
In a tree, nodes have a single parent node and may have many children nodes. They never have more th ...
- 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design
字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...
- LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design
字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith ...
- [LeetCode] Add and Search Word - Data structure design 添加和查找单词-数据结构设计
Design a data structure that supports the following two operations: void addWord(word) bool search(w ...
- Finger Trees: A Simple General-purpose Data Structure
http://staff.city.ac.uk/~ross/papers/FingerTree.html Summary We present 2-3 finger trees, a function ...
- Java for LeetCode 211 Add and Search Word - Data structure design
Design a data structure that supports the following two operations: void addWord(word)bool search(wo ...
- LeetCode 笔记27 Two Sum III - Data structure design
Design and implement a TwoSum class. It should support the following operations: add and find. add - ...
- hdu 4217 Data Structure? 树状数组求第K小
Data Structure? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
随机推荐
- mysql插入数据报错1366
数据表插入中文数据报错 Warning Code : 1366 Incorrect string value: '\xE5\x9C\xA8' for column 'name' at row 1 原因 ...
- iOS项目之苹果审核被拒
解读: 3.2 其他业务模式问题下方列表并非详尽清单,并且您提交的 App 可能会导致我们的政策有所更改或更新,但这里有一些额外的应做事宜和勿做事宜需要您谨记在心: 可以接受 (i)在您的 App 中 ...
- STS的安装与简单使用
一,STS下载与安装 1.下载地址:http://spring.io/tools3/sts/all 2.选择对应版本安装或者解压 二,STS简单使用 1.快捷方法 (1)main+alt+/+回车 = ...
- Not supported for DML operations
问题原因 缺失@Modifying注解 问题解决 在自定义的修改方法(delete.update)上面除了@Transactional注解和@Query还需要@Modifying注解 Bug重现 or ...
- 【C++】回看面向对象与C++
本文将记录在C++与面向对象的重新学习过程中的要点: 未定义行为
- Learning-MySQL【2】:MySQL存储引擎及数据库的操作管理
一.存储引擎 存储引擎实际上就是如何存储数据.如何为存储的数据建立索引和如何更新.查询数据.存储引擎也可以称为表类型. MySQL提供了插件式(pluggable)的存储引擎,存储引擎是基于表的.同一 ...
- Mock.js 虚拟接口 数据模拟
Mock.js 是一款前端开发中拦截Ajax请求再生成随机数据响应的工具.可以用来模拟服务器响应. 优点是非常简单方便, 无侵入性, 基本覆盖常用的接口数据类型. 大概记录下使用过程, 详细使用可以参 ...
- Docker for windows10 配置阿里云镜像
到官网下载 并且 安装 Docker for windows (注意 官方要求 windows10 是企业版才行 天朝你懂的 ) 关于 Docker for windows 要求有 带有 hy ...
- 伪分布式安装core-site.xml和hdfs-site.xml配置文件
hadoop的伪分布式安装流程如下所示: 其中core-site.xml和hdfs-site.xml是两个很重要的配置文件. core-site.xml <configuration> & ...
- .NET Core 如何上传文件及处理大文件上传
当你使用IFormFile接口来上传文件的时候,一定要注意,IFormFile会将一个Http请求中的所有文件都读取到服务器内存后,才会触发ASP.NET Core MVC的Controller中的A ...