最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

说到神经网络,大家看到这个图应该不陌生:

这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,...,xn},输出也是一堆数据{y1,y2,y3,...,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础)

假设,你有这样一个网络层:

第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

现在对他们赋上初值,如下图:

其中,输入数据 i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;

          w5=0.40,w6=0.45,w7=0.50,w8=0.88

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

Step 1 前向传播

1.输入层---->隐含层:

计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

同理,可计算出神经元h2的输出o2:

2.隐含层---->输出层:

计算输出层神经元o1和o2的值:

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

Step 2 反向传播

1.计算总误差

总误差:(square error)

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:



2.隐含层---->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

下面的图可以更直观的看清楚误差是怎样反向传播的:

现在我们来分别计算每个式子的值:

计算

未完待续……

From: http://www.cnblogs.com/charlotte77/p/5629865.html

一文弄懂神经网络中的反向传播法(Backpropagation algorithm)的更多相关文章

  1. 一文弄懂神经网络中的反向传播法——BackPropagation【转】

    本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation   最近在看深度学习 ...

  2. 一文弄懂神经网络中的反向传播法——BackPropagation

    最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...

  3. [转] 一文弄懂神经网络中的反向传播法——BackPropagation

    在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/ ...

  4. 神经网络中的反向传播法--bp【转载】

    from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...

  5. 反向传播算法 Backpropagation Algorithm

    假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...

  6. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

  7. 一文读懂神经网络训练中的Batch Size,Epoch,Iteration

    一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小, ...

  8. 彻底弄懂AngularJS中的transclusion

    点击查看AngularJS系列目录 彻底弄懂AngularJS中的transclusion AngularJS中指令的重要性是不言而喻的,指令让我们可以创建自己的HTML标记,它将自定义元素变成了一个 ...

  9. 一文弄懂-Netty核心功能及线程模型

    目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty ...

随机推荐

  1. [蓝点zigBee] CC2530 实用教程总览

    Zstack 单个模块实验(无数据通信) 1Zstack精简,增加串口数据 Zstack 里面工程较多,整体代码量很大,若入门只需要先之关注其中的一个工程,在这个工程里添添补补逐步学习. 这一节主要是 ...

  2. [ONTAK2015]Związek Harcerstwa Bajtockiego

    [ONTAK2015]Związek Harcerstwa Bajtockiego 题目大意: 一棵\(n(n\le10^6)\)个点的树,从\(m\)出发,依次执行\(k(k\le10^6)\)条操 ...

  3. [CC-MINXOR]XOR Minimization

    [CC-MINXOR]XOR Minimization 题目大意: 有一个长度为\(n\)的数列\(A_{1\sim n}\).\(q\)次操作,操作包含以下两种: 询问\(A_{l\sim r}\) ...

  4. 移动游戏ui设计(一)

    游戏世界 游戏界面就是根据游戏特性,把必要的信息展现在游戏主界面,操控界面和弹出界面上,通过合理的设计引导用户进行人机交互操作: 1, 游戏界面设计原则:交互设计尽量不要繁琐,用最简单的方式引导用户即 ...

  5. GItHub Git 基础教程 常用命令 命令

    最近复习了一下Git的使用,简单总结了一些.以供以后查阅和大家参考. 一,安装 首先是Linux下: 打开shell ,输入 sudo apt-get install git-core 之后回车输入密 ...

  6. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  7. Aizu2170 Marked Ancestor(并查集)

    https://vjudge.net/problem/Aizu-2170 并查集用于管理元素分组情况. 建树pre[]记录父节点,一开始只有结点1被标记了,所以find()最终得到的根都是1. 如果遇 ...

  8. 通过TopShelf快速开发服务程序

    我之前在文章中介绍过使用NSSM将exe封装为服务,这种方式我个人是比较喜欢的,一来原始文件不受服务的开发约束,二来也可以提供简单的日志系统.线程守护等功能,是我个人比较倾向的行为.但是,有的场景下, ...

  9. 分享12款令人瞠目结舌的WebVR演示和实验效果

    不管你信不信, WebVR绝对是浏览器下一个让你激动的技术方向, 也许很快你就可以使用VR头显或者相关设备直接访问web内容和资源啦! 在这篇资源分享帖中,我们将介绍很多基于浏览器的VR演示和游戏,帮 ...

  10. 1154:LETTERS

    题目链接http://bailian.openjudge.cn/practice/1154/ 总时间限制: 1000ms 内存限制: 65536kB 描述 A single-player game i ...