Notes from C++ Primer

Associative containers differ in fundamental respect from the sequential containers: elements in associative containers are stored and retrieved by a key, in contrast to elements in a sequential container, which are stored and accessed sequentially by their position within the container.

Associative container supports using key to find and access element with high efficiency. There're two base associative container type: map and set. The element of map is organized with the key-value form: the key is used as the index of map, and the value is the data of storing and accessing. The set contains only one key and supports efficient queries to whether a given key is present.

pair Type

pair is also a kind of template type, but with two type parameters passing when pair is initialized.

pair<string, string> anon;			// holds two strings
pair<string, int> word_count; // holds a string and an int
pair<string, vector<int> > line; // holds string and vector<int>

We also can provides initial value in definition:

pair<string, string> author("James", "Joyce");

If we need to define many same pair type, we can use typedef to simplify the declaration:

typedef pair<string, string> Author;
Author proust("Marcel", "Proust");
Author joyce("James", "Joyce");

pair object has two member variable: first, and second. The dot operation can be used to access them:

string firstBook;

// access and test the data members of the pair
if(author.first == "James" && author.second == "Joyce")
firstBook = "Stephen Hero";

The library provides make_pair function to generate new pair object:

pair<string, string> next_auth;
string first, last;
while(cin >> first >> last)
{
// generate a pair from first and last
next_auth = make_pair(first, last); // process next_auth ...
}

These operations are equivalent to the below operations:

// use pair constructor to make first and last into a pair
next_auth = pair<string, string>(first, last);

or read directly from input stream:

pair<string, string> next_auth;

// read directly into the members of next_auth
while(cin >> next_auth.first >> next_auth.second)
{
// process next_auth ...
}

map Type

A map is a collection of key-value pairs. It is often referred as an associative array: use the key to get value instead of using position to get value. There's a constraint for the key type. The type of key must support the comparasion function "<". And the "<" relationship must be validate.

Dereference the map iterator will generate pair type object:

// count number of times each word occurs in the input
map<string, int> word_count; // empty map from string to int // get an iterator to an element in word_count
map<string, int>::iterator map_it = word_count.begin(); // *map_it is a reference to a pair<const string, int> object
cout << map_it->first; // prints the key for this element
cout << map_it->second; // prints the value of the element
map_it->first = "new key"; // error: key is const
++map_it->second; // ok: we can change value through an iterator

Add elements for map

Add elements for map can be operated by using functino insert, or using subscript operation to fetch element and then assigning value.

map<string, int> word_count;	// empty map

// insert default initialized element with key Anna; then assign 1 to its value
word_count["Anna"] = 1;

These codes are equivalent to:

  1. Find the element with key "Anna". Failed.
  2. Create a new key-value pairs for inserting into word_count. Its key is const string type object storing Anna. Its value is initialized by default constructor or just value 0.
  3. Insert the new key-value pairs.
  4. Fetch the element inserted just now, and assign its value as 1.

The behaviors of using subscript accessing map and accessing vector are totally different. Using subscript access inexistent element in map will lead to adding a new element in map. Its subscript will be the key.

The return type of subscript operation is mapped value type, and the return type of map iterator is const key_type and mapped_type pair object.

cout << word_count["Anna"];		// fetch element indexed by Anna; prints 1
++word_count["Anna"]; // fetch the element and add one to it
cout << word_count["Anna"]; // fetch the element and print it; prints 2

The behavior of adding new element when accessing inexistent value's key will simplify program:

// count number of times each word occurs in the input
map<string, int> word_count; // empty map from string to int
string word;
while(cin >> word)
++word_count[word];

use of map::insert

Use map::insert instead of subscript operation to add new element:

// if Anna not already in word_count, inserts new element with value 1
word_count.insert(map<string, int>::value_type("Anna", 1));

map::insert can avoid the unnecessary initialization in subscription operation. A more concise way:

word_count.insert(make_pair("Anna", 1));

or use typedef

typedef map<string, int>::value_type valType;
word_count.insert(valType("Anna", 1));

If the key of inserting element is existing, the insert won't do any operations. The one key-value pairs formal parameter version insert will return a pair object including one iterator and one bool value. The iterator points to the element in map with corresponding key. If the bool is false, it means the key of inserting element is existing in map, keep the key without changing; If the bool is true, add one new element.

// count number of times each word occurs in the input
map<string, int> word_count; // empty map from string to int
string word;
while(cin >> word)
{
// insert element with key equal to word and value 1
// if word already in word_count, insert does nothing
pair<map<string, int>::iterator, bool> ret = word_count.insert(make_pair(word, 1)); if(!ret.second)
++ret.first->second; // increment counter
}

Find and retrieve element in map

The easiest way to retrieve a value is to use subscript operation:

map<string, int> word_count;
int occurs = word_count["foobar"];

But the subscript operation has important side effect: if the key is not existing in map, then subscript operation will insert a new element with the key and default initial value. So, if the "foobar" is not existing, then pairs with key: foobar and value: 0 will be inserted into map: word_count. And the occurs will get 0.

So map container provides two operations: count and find to check if a key is existing without inserting a new element with the key.

  • m.count(k)    return the times of k in m
  • m.find(k)       if exist the element with key k, return the iterator of that element, else return the off-the-end iterator

For the map object, the return value of count is 0 or 1. The return value of multimap container is more useful. Thus if the return value of count is not 0, we can use subscript operation to access the value avoiding adding new element:

int occurs = 0;
if(word_count.count("foobar"))
occurs = word_count["foobar"];

There, after the execution of count, the use of subscript operation will lead to one more search process. Thus there're two find processes in total. The use of find will only need one find process:

int occurs = 0;
map<string, int>::iterator it = word_count.find("foobar");
if(it != word_count.end())
occurs = it->second;

Associative Containers的更多相关文章

  1. 关联式容器(associative containers)

    关联式容器(associative containers) 根据数据在容器中的排列特性,容器可分为序列式(sequence)和关联式(associative)两种. 标准的STL关联式容器分为set( ...

  2. [c++] Associative Containers

    关联容器 和 顺序容器 的本质差别在于: 关联容器通过键(key)存储和读取元素,而顺序容器则通过元素在容器中的位置顺序存储和访问元素. Reference: http://www.cnblogs.c ...

  3. Understand the Qt containers(有对应表)

    Container classes are one of the cornerstones of object-oriented programming, invaluable tools that ...

  4. C++ std::set

    std::set template < class T, // set::key_type/value_type class Compare = less<T>, // set::k ...

  5. C++ std::multimap

    std::multimap template < class Key, // multimap::key_type class T, // multimap::mapped_type class ...

  6. C++ std::map

    std::map template < class Key, // map::key_type class T, // map::mapped_type class Compare = less ...

  7. C++ std::multiset

    std::multiset template < class T, // multiset::key_type/value_type class Compare = less<T>, ...

  8. C++ 关联容器

    <C++ Primer 4th>读书笔记 关联容器和顺序容器的本质差别在于:关联容器通过键(key)存储和读取元素,而顺序容器则通过元素在容器中的位置顺序存储和访问元素. 关联容器(Ass ...

  9. [Code::Blocks] Install wxWidgets & openCV

    The open source, cross platform, free C++ IDE. Code::Blocks is a free C++ IDE built to meet the most ...

随机推荐

  1. JavaScript倒计时实现

    /** * 倒计时函数 * @param {String}} endTime 终止时间戳 */ const countDown = (endTime, callback) => { const ...

  2. python 列表 list的基本操作

    一,Python 的列表数据类型包含更多的方法. 这里是所有的列表对象方法: list.append(x) 把一个元素添加到链表的结尾,相当于 a[len(a):] = [x] . list.exte ...

  3. IDEA使用SpringBoot 、maven创建微服务的简单过程

    使用IDEA新建一个简单的微服务 1. 打开IDEA,File -> New  -> project 打开如下图1-1所示的对话框 图 1-1 2.点击"Next"按钮 ...

  4. 深度学习VS机器学习——到底什么区别

    转自:https://baijiahao.baidu.com/s?id=1595509949786067084&wfr=spider&for=pc 最近在听深度学习的课,老师提了一个基 ...

  5. resize2fs

    VPS是15G的..但是dh和fdisk显示不一样..求解 df:Filesystem Size Used Avail Use% Mounted onudev 236M 0 236M 0% /devt ...

  6. texmaker报错:could not start command 解决

    我当时文件命名加了邮箱,引入特殊字符@,然后就报错了

  7. tensorflow报错error,tf.concat Expected int32, got list containing Tensors of type '_Message' instead

    参考:https://stackoverflow.com/questions/41813665/tensorflow-slim-typeerror-expected-int32-got-list-co ...

  8. easyui datagrid自定义按钮列,即最后面的操作列

    在很多时候我们要在表格的最后添加一列操作列,easyUI貌似没有提供种功能,不过没关系,我们可以自定义来实现首先是HTML部分 <table id="tt" class=&q ...

  9. 图像的几何变换——OpenCV-Python Tutorials

    原文地址http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_tran ...

  10. protobuf shutdownprotobuflibrary的时候crash,释放的指针出错

    往往是多个子项目中有多次链接使用. 解决方法: 1. 使用静态库. 2. issure中有说2.6.1还未允许多次释放,建议使用3.4.x版本. 参考: https://github.com/prot ...