1*1卷积过滤器 和正常的过滤器一样,唯一不同的是它的大小是1*1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维.

由于3*3卷积或者5*5卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以1*1卷积在3*3卷积或者5*5卷积计算之前先降低维度。

那么,1*1卷积的主要作用有以下几点:

1、降维( dimension reductionality )

某次卷积之后的结果是W*H*100的特征,现在需要用1*1的卷积核将其降维成W*H*10,即100个通道变成10个通道:
通过一次卷积操作,W*H*100将变为W*H*1,这样的话,使用10个1*1的卷积核,显然可以卷积出10个W*H*1,再做通道的串接操作,就实现了W*H*5。

2. 升维

比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*7,即6个通道变成7个通道:
  通过一次卷积操作,W*H*6将变成W*H*1,这样的话,使用7个1*1的卷积核,显然可以卷积出7个W*H*1,再做铜套串接操作,就实现了W*H*7。

3、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;

[深度学习]CNN--卷积神经网络中用1*1 卷积有什么作用的更多相关文章

  1. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  2. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  3. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)

    作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...

  4. 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)

    Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. ...

  5. 深度学习之 TensorFlow(四):卷积神经网络

    基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量.卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直 ...

  6. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  7. 深度学习、图像识别入门,从VGG16卷积神经网络开始

    刚开始接触深度学习.卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络: 本文思路: 一.我认为 ...

  8. 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)

    1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...

  9. 深度学习-CNN+RNN笔记

    以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...

随机推荐

  1. RNA-seq数据综合分析教程 AKAP95

    https://blog.csdn.net/l_yivs?t=1 RNA-seq数据综合分析教程 2 4,055 A+ 所属分类:Transcriptomics   收  藏 2     RNA-se ...

  2. linux就该这么学,第十一天了

    今天讲了,网卡绑,定,两块网卡同时工作,自动备源,理论上速度提升一倍,工作中可以用到的技术 还有sshd服务,端口22,远程连接使用,还可以设置root是否可以直接登录,主要配置文件在,/etc/ss ...

  3. UI与开发的必备神器!— iDoc一键适配不同平台尺寸(iDoc201902-2新功能)

    一.自动换算不同平台尺寸在一个项目从设计到开发的过程中,为了适配不同设备,一份设计稿,UI需要花大量的时间去制作各种尺寸的切图,耗时耗力. 那有没有一种高效的办法,让UI只需要设计一份设计稿就可以了呢 ...

  4. Netsharp总体介绍

    作者:秋时   日期:2014年02月05日   转载须说明出处  Netsharp交流群:338963050(请有详细的请求说明) Netsharp系列文章目录结构 Netsharp是一款免费的基于 ...

  5. java29

    1.封装小练习--长方形 创建长方形类 使用getset方法 利用返回值方法计算长方形的面积,周长. 保证长方形的长宽为整数 2.继承小练习--猫狗 当父类中有构造器时,子类也要有构造器,并且要求设置 ...

  6. SimpleDateFormat的parse(String str)方法的用法

    SimpleDateFormate 中的parse 方法可以将string类型的字符串转换成特定的date的特定类型.

  7. linux服务器时间同步失败解决方法

    linux服务器时间同步失败解决方法 1.为什么会时间不同步: ①计算机的时间是根据电脑晶振以固定频率震荡而产生的,由于晶振的不同或者老化,会导致电脑时间积累误差的产 (什么是电脑晶振:http:// ...

  8. Rabbit mq 简单应用

    参考:http://rabbitmq.mr-ping.com/AMQP/AMQP_0-9-1_Model_Explained.html 简答模式(exchange不工作) import pika # ...

  9. pgsqls修改表字段长度

    alter table T_RPACT_PROTO_EDIT_RECORD alter column remark type VARCHAR(1024); 需要注意type关键字

  10. Ocelot使用

    1.在网关项目中通过nuget引入Ocelot 2.Startup.cs文件代码调整 using System; using System.Collections.Generic; using Sys ...