[深度学习]CNN--卷积神经网络中用1*1 卷积有什么作用
1*1卷积过滤器 和正常的过滤器一样,唯一不同的是它的大小是1*1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维.
由于3*3卷积或者5*5卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以1*1卷积在3*3卷积或者5*5卷积计算之前先降低维度。
那么,1*1卷积的主要作用有以下几点:
1、降维( dimension reductionality )
某次卷积之后的结果是W*H*100的特征,现在需要用1*1的卷积核将其降维成W*H*10,即100个通道变成10个通道:
通过一次卷积操作,W*H*100将变为W*H*1,这样的话,使用10个1*1的卷积核,显然可以卷积出10个W*H*1,再做通道的串接操作,就实现了W*H*5。
2. 升维
比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*7,即6个通道变成7个通道:
通过一次卷积操作,W*H*6将变成W*H*1,这样的话,使用7个1*1的卷积核,显然可以卷积出7个W*H*1,再做铜套串接操作,就实现了W*H*7。
3、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;
[深度学习]CNN--卷积神经网络中用1*1 卷积有什么作用的更多相关文章
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)
作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)
Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. ...
- 深度学习之 TensorFlow(四):卷积神经网络
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量.卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直 ...
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
- 深度学习、图像识别入门,从VGG16卷积神经网络开始
刚开始接触深度学习.卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络: 本文思路: 一.我认为 ...
- 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...
- 深度学习-CNN+RNN笔记
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...
随机推荐
- python3+scrapy 趣头条爬虫实例
项目简介 爬取趣头条新闻(http://home.qutoutiao.net/pages/home.html),具体内容: 1.列表页(json):标题,简介.封面图.来源.发布时间 2.详情页(ht ...
- HOSTNAME问题 和yum配置163源的操作 安装lsb_release,KSH,CSH
HOSTNAME 在 /etc/hosts 里添加一行 127.0.0.1 yourhostname yum配置 来自http://www.cnblogs.com/wutengbiao/p/41889 ...
- [TestNG] Eclipse/STS中两种安装TestNG的方法
Two Ways To Install TestNG in Eclipse/STS Today I install the newest Sprint Tool Suite and want to i ...
- python 练习1
题目: 1.输入用户名密码2.认证成功后显示欢迎信息3.输错三次后锁定 #!/usr/bin/env python import sys,pickle account = {'wyh':123,'cl ...
- hdu 1325 && poj 1308 Is It A Tree?(并查集)
Description A tree is a well-known data structure that is either empty (null, void, nothing) or is a ...
- JQuery续
一.表单属性选择器 :enabled :disabled :checked :selected <body> <form> <input type="check ...
- Build.gradle的详细配置说明
转自:http://blog.csdn.net/u012246458/article/details/51722624 apply plugin: 'com.android.application'/ ...
- PHP查看内存使用
第一想法:memory_get_usage() 用microtime函数就可以分析程序执行时间memory_get_usage可以分析内存占用空间 SQL的效率可以使用打开慢查询查看日志分析SQL 找 ...
- 背水一战 Windows 10 (89) - 文件系统: 读写文本数据, 读写二进制数据, 读写流数据
[源码下载] 背水一战 Windows 10 (89) - 文件系统: 读写文本数据, 读写二进制数据, 读写流数据 作者:webabcd 介绍背水一战 Windows 10 之 文件系统 读写文本数 ...
- Android开发 - 掌握ConstraintLayout(三)编辑器
从本篇博客开始我们开始介绍如何使用ConstraintLayout. 既然ConstraintLayout叫约束布局,首先我们先介绍什么叫约束(Constraints): 约束(Constraints ...