That Nice Euler Circuit(LA3263+几何)
That Nice Euler Circuit
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu
Description
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in the graph has even degree.
Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about if the pencil will ever go off the boundary.
In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0,Y0). Each subsequent instruction is also of the form (X', Y'), which means to move the pencil from the previous position to the new position (X', Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position (X0, Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.
After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.
Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.
Input
There are no more than 25 test cases. Ease case starts with a line containing an integer N4, which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.
Output
For each test case there will be one output line in the format
Case x: There are w pieces.,
where x is the serial number starting from 1.
Note: The figures below illustrate the two sample input cases.
Sample Input
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0
Sample Output
Case 1: There are 2 pieces.
Case 2: There are 5 pieces.
/*********************************************************************************
欧拉定理:设平面图的顶点数、边数和面数分别为V、E和F,则V+F-E=2
so...F=E+2-V;
该平面图的结点有原来的和新增结点构成,由于可能出现三线共点,需要删除重复点
*********************************************************************************/
#include<cstdio>
#include<cmath>
#include<algorithm>
#define PI acos(-1.0)
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}; typedef Point Vector; //向量+向量=向量; 向量+点=点
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} //点-点=向量
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} //向量*数=向量
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} //向量/数=向量
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} const double eps = 1e-; int dcmp(double x){if(fabs(x)<eps)return ;else return x < ? - : ;} bool operator == (const Point& a,const Point& b){return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));} double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);} /*******两直线交点*******/
//调用前确保两条直线P+tv和Q+tv有唯一交点,当且仅当Cross(v,w)非0;
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
if(Cross(v,w))
{
double t=Cross(w,u)/Cross(v,w);//精度高的时候,考虑自定义分数类
return P+v*t;
}
// else
// return ;
} /************************
线段相交判定(规范相交)
************************/
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1);
double c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1);
double c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<&&dcmp(c3)*dcmp(c4)<;
}
/**如果允许在端点处相交:如果c1和c2都是0,表示共线,如果c1和c2不都是0,则表示某个端点在另一条直线上**/
bool Onsegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==&&dcmp(Dot(a1-p,a2-p))<;
} const int mmax=;
Point P[mmax],V[mmax*mmax]; Point read_point(Point &P)
{
scanf("%lf%lf",&P.x,&P.y);
return P;
} int main()
{
int n;
int ck=;
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
P[i]=read_point(P[i]);
V[i]=P[i];
}
n--;
int c=n,e=n;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
if(SegmentProperIntersection(P[i],P[i+],P[j],P[j+]))//严格相交
{
V[c++]=GetLineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);//交点
}
}
}
// printf("c=%d\n",c);
sort(V,V+c);
c=unique(V,V+c)-V;
// printf("%d=%d-%d\n",c,unique(V,V+c),V);
for(int i=;i<c;i++)
{
for(int j=;j<n;j++)
{
if(Onsegment(V[i],P[j],P[j+])) e++;//边数
}
}
printf("Case %d: There are %d pieces.\n",ck++,e+-c);
}
return ;
} /*
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
7
1 1 1 5 2 1 2 5 5 1 3 9 1 1
0
*/
That Nice Euler Circuit(LA3263+几何)的更多相关文章
- UVALive - 3263 That Nice Euler Circuit (几何)
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给 ...
- UVALive-3263 That Nice Euler Circuit (几何欧拉定理)
https://vjudge.net/problem/UVALive-3263 平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线. 组成一笔画的线段可以相交,但不会部 ...
- UVALi 3263 That Nice Euler Circuit(几何)
That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...
- poj2284 That Nice Euler Circuit(欧拉公式)
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...
- POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)
That Nice Euler Circuit Time Limit: 3000MS M ...
- UVa 10735 (混合图的欧拉回路) Euler Circuit
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...
- UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...
- UVA-10735 - Euler Circuit(混合欧拉回路输出)
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...
- Uva 1342 - That Nice Euler Circuit
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...
随机推荐
- Paper | 亚像素运动补偿 + 视频超分辨
目录 1. ABSTRACT 2. INTRODUCTION 3. RELATED WORKS 4. SUB-PIXEL MOTION COMPENSATION (SPMC) 5. OUR METHO ...
- 将Linux(ubuntu)安装到U盘上,实现即插即用
说明: 本教程是说明如何将ubuntu系统安装到U盘上(也就是把U盘当做电脑的硬盘),可以实现U盘插到任何电脑上都能够在实体机上运行ubuntu系统,而且所有的运行配置都能被保存,相当于随身携带的一个 ...
- cad2013卸载/安装失败/如何彻底卸载清除干净cad2013注册表和文件的方法
cad2013提示安装未完成,某些产品无法安装该怎样解决呢?一些朋友在win7或者win10系统下安装cad2013失败提示cad2013安装未完成,某些产品无法安装,也有时候想重新安装cad2013 ...
- blender 快捷键手动整理
armature envelop 设置骨骼影响范围:Edit Mode 下,选中骨头的其中一端,按 Alt + s,缩放 T 呼出 Tools N 呼出 Property Ctrl + Alt + Q ...
- 从理论到实践 全面理解HTTP/2
前言 为了降低加载时间,相信大多数人都做过如下尝试 Keep-alive: TCP持久连接,增加了TCP连接的复用性,但只有当上一个请求/响应完全完成后,client才能发送下一个请求 Pipelin ...
- php cli模式和浏览器访问下加载php.ini文件的注意事项[架构篇]
使用wampserver或Xampp时,会将配置文件放在一个统一的目录中去调用,这时如果都使用浏览器访问,自然是没有问题的,但是如果换成cli命令行模式运行,则会出现加载了的扩展无法使用的问题. 案例 ...
- 软件测试人员需要掌握的linux命令(一)
有些技能可以事半功倍,熟练的使用这些命令可以提高工作效率,并且结合这些命令对测试过程中遇到的问题进行一些初步的定位. 一:目录与文件操作: ls 使用权限:所有人功能 : 显示指定工作目录下之内容(列 ...
- 物体检测,Error: maximum box coordinate value is too large
使用ssd目标检测,出现error:maximum box coordinate value is larger than 1.100000: ] [1.325] 主要原因在于,用labelImg 标 ...
- 发布一个关于SharePoint的管理小工具
源码地址: https://github.com/GavinHacker/SiteCollectionManager 这是一个C#可执行程序,用于添加,删除,备份,还原SharePoint站点,可以 ...
- [HAOI2017] 新型城市化
给出的图中恰包含2个团,则图的补图为一个二分图,其最大独立集为原图的最大团. 我们知道,二分图的最大独立集=V-最小顶点覆盖,最小顶点覆盖=最大匹配. 问题转化为:计算删去后最大匹配减小的边集. 所以 ...