That Nice Euler Circuit

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

 

Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in the graph has even degree.

Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0,Y0). Each subsequent instruction is also of the form (X'Y'), which means to move the pencil from the previous position to the new position (X'Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position (X0, Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integer N4, which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.
/*********************************************************************************
欧拉定理:设平面图的顶点数、边数和面数分别为V、E和F,则V+F-E=2
so...F=E+2-V;
该平面图的结点有原来的和新增结点构成,由于可能出现三线共点,需要删除重复点
*********************************************************************************/
#include<cstdio>
#include<cmath>
#include<algorithm>
#define PI acos(-1.0)
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}; typedef Point Vector; //向量+向量=向量; 向量+点=点
Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);} //点-点=向量
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} //向量*数=向量
Vector operator * (Vector A,double p){return Vector(A.x*p,A.y*p);} //向量/数=向量
Vector operator / (Vector A,double p){return Vector(A.x/p,A.y/p);} bool operator < (const Point& a,const Point& b){return a.x<b.x||(a.x==b.x && a.y<b.y);} const double eps = 1e-; int dcmp(double x){if(fabs(x)<eps)return ;else return x < ? - : ;} bool operator == (const Point& a,const Point& b){return dcmp(a.x-b.x)== && dcmp(a.y-b.y)==;} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/length(A)/length(B));} double Cross(Vector A,Vector B){return A.x*B.y-B.x*A.y;}
double Area2(Point A,Point B,Point C){return Cross(B-A,C-A);} /*******两直线交点*******/
//调用前确保两条直线P+tv和Q+tv有唯一交点,当且仅当Cross(v,w)非0;
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
if(Cross(v,w))
{
double t=Cross(w,u)/Cross(v,w);//精度高的时候,考虑自定义分数类
return P+v*t;
}
// else
// return ;
} /************************
线段相交判定(规范相交)
************************/
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1);
double c2=Cross(a2-a1,b2-a1);
double c3=Cross(b2-b1,a1-b1);
double c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<&&dcmp(c3)*dcmp(c4)<;
}
/**如果允许在端点处相交:如果c1和c2都是0,表示共线,如果c1和c2不都是0,则表示某个端点在另一条直线上**/
bool Onsegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==&&dcmp(Dot(a1-p,a2-p))<;
} const int mmax=;
Point P[mmax],V[mmax*mmax]; Point read_point(Point &P)
{
scanf("%lf%lf",&P.x,&P.y);
return P;
} int main()
{
int n;
int ck=;
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
P[i]=read_point(P[i]);
V[i]=P[i];
}
n--;
int c=n,e=n;
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
if(SegmentProperIntersection(P[i],P[i+],P[j],P[j+]))//严格相交
{
V[c++]=GetLineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);//交点
}
}
}
// printf("c=%d\n",c);
sort(V,V+c);
c=unique(V,V+c)-V;
// printf("%d=%d-%d\n",c,unique(V,V+c),V);
for(int i=;i<c;i++)
{
for(int j=;j<n;j++)
{
if(Onsegment(V[i],P[j],P[j+])) e++;//边数
}
}
printf("Case %d: There are %d pieces.\n",ck++,e+-c);
}
return ;
} /*
5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
7
1 1 1 5 2 1 2 5 5 1 3 9 1 1
0
*/

 

That Nice Euler Circuit(LA3263+几何)的更多相关文章

  1. UVALive - 3263 That Nice Euler Circuit (几何)

    UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给 ...

  2. UVALive-3263 That Nice Euler Circuit (几何欧拉定理)

    https://vjudge.net/problem/UVALive-3263 平面上有一个n个端点的一笔画,第n个端点总是和第一个端点重合,因此图示一条闭合曲线. 组成一笔画的线段可以相交,但不会部 ...

  3. UVALi 3263 That Nice Euler Circuit(几何)

    That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...

  4. poj2284 That Nice Euler Circuit(欧拉公式)

    题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k( ...

  5. POJ2284 That Nice Euler Circuit (欧拉公式)(计算几何 线段相交问题)

                                                          That Nice Euler Circuit Time Limit: 3000MS   M ...

  6. UVa 10735 (混合图的欧拉回路) Euler Circuit

    题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...

  7. UVA 10735 Euler Circuit 混合图的欧拉回路(最大流,fluery算法)

    题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制 ...

  8. UVA-10735 - Euler Circuit(混合欧拉回路输出)

    题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度 ...

  9. Uva 1342 - That Nice Euler Circuit

    Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his ...

随机推荐

  1. android资源文件

    代码与资源分离原则:便于维护与修改shape:定义图形 selector:按照不同的情况加载不同的color或drawable layer-list:从下往上图形层叠加载 资源文件有:/res/dra ...

  2. 卷积在深度学习中的作用(转自http://timdettmers.com/2015/03/26/convolution-deep-learning/)

    卷积可能是现在深入学习中最重要的概念.卷积网络和卷积网络将深度学习推向了几乎所有机器学习任务的最前沿.但是,卷积如此强大呢?它是如何工作的?在这篇博客文章中,我将解释卷积并将其与其他概念联系起来,以帮 ...

  3. Spring 使用javaconfig配置aop

    1.在xml中需要配置自动代理 /** * */ package com.junge.demo.spring.dao; import org.springframework.context.annot ...

  4. 用scp这个命令来通过ssh传输文件

    小结: 1. upload files 到 ssh 服务器 localhost $ scp localfile root@172.20.34.**:~/remotepath 2. 从 ssh 服务器d ...

  5. Android开发 - 掌握ConstraintLayout(三)编辑器

    从本篇博客开始我们开始介绍如何使用ConstraintLayout. 既然ConstraintLayout叫约束布局,首先我们先介绍什么叫约束(Constraints): 约束(Constraints ...

  6. Spring Data Solr的分组查询 for 搜索面板的商品分类

    private List searchCategoryList(Map searchMap) { SimpleQuery query = new SimpleQuery(new Criteria(&q ...

  7. 深入浅出TCP/IP协议

    目录 什么是网络协议? 谁来制定这个网络协议? TCI/IP协议 什么是socket? http协议属于应用层还是传输层? soap可以使用HTTP协议进行传输吗? 各层协议举例 什么是网络协议? 话 ...

  8. 火狐浏览器安装 Modify Headers 插件

    一.火狐浏览器插件安装 这里以火狐浏览器的Modify Headers插件安装为例,展示火狐插件的安装: 1.打开火狐浏览器,右上角选择“附加组件” 2.搜索Modify Headers插件 3.安装 ...

  9. C++随机数引擎

    C++的随机数引擎有以下几个要点需要注意:  1.随机数发生器使用同一种子会生成相同序列的随机数序列 2.为了让程序每次运行都会生成不同的随机结果,我们可以使用 time(0) 产生一个随机数种子 3 ...

  10. 一种基于python的人脸识别开源系统

    今天在搜索人脸识别的文章时,无意中搜到一个比较开源代码,介绍说是这个系统人脸的识别率 是比较高的,可以达到:99.38%.这么高的识别率,着实把我吓了一跳.抱着实事求是的态度.个人 就做了一些验证和研 ...