对于移动机器人来说,最吸引人的莫过于SLAM,堪称Moving Robot 皇冠上的明珠。Perception 服务于 SLAM,Motion Plan基于SLAM。SLAM在移动机器人整个问题框架中,起着最为核心的作用。为了专注于Mapping,此章我们假设 Location 是已知的。

1、Metric Map

  轨迹规划任务是再Metric Map的基础上完成的。当然,层次最高的是语意图,语意图是未来研究的热点方向。获取Metric Map 的难度最大之处在于:1、传感器噪声(May be solved by PGM; 2、机器人在移动(Location 问题);

  常见的MAP是基于UGV而言的, 使用的地图是Occupancy Map,与之前在轨迹规划栏目中的图一样,以 0 表示无法到达的区域,以 1 表示可以达到的区域。

  

2、传感器噪声问题的Naive Solution

  解决传感器噪声问题的方法是对传感器进行建模,其模型为概率模型:

  

  对于给定的观测,其factor 如上,当连续N次观测到同一个xy的值时,利用 factor product,即可获得n次观测的Joint CPD ,在Joint CPD 上运行MAP算法,即可获得最终的地图了。在通解的基础上,确实是这样设计算法的,但是我们目前面对的Mapping 问题还太Naive,不需要如此复杂的手段。

  

  此处定义了一个odd,表示发生与否可能性的比值。换言之,就是传感器出错的概率比,这是一个可以估计的量。比如传感器测出有物体的odd是2,没物体的odd是3.

  依据Beyes 公式把Odd展开:

  

  其中,p(m = 1|z)/p(m = 0/z) 表示的是测量完成后 odd 的值,它等于  此次测量值 + 之前的odd。

  换言之,我们只要定义好先验图与log-odd-meas,就可以了。

3、Mapping Algorithm

  所有的东西总是说起来容易做起来难。即使是如此Naive的Map,真正Coding还是很难的。尤其是如何高效的实现Map的更新,此外,机器人每次发出的激光线达上千条,每个位姿都要更新上前个点。对此问题,我设计了并行算法,即使在并行的条件下,生成一次Map也要近20s.

  算法流程如下:

  1、将激光击中的点变换到全局坐标系下

  2、利用Breshenman 算法,获取激光通过的路径

  3、获取Occupied Map 与 Free Map

  4、更新Map.

  左图是单次测量的图,也就是机器人一个位姿的测量结果。显然,在靠近机器人的地方,噪声严重。右图是机器人在空间中移动后最终的Map。

4、3D Mapping

  对于2维地图,我们采用 free+occupy 的形式储存空间中的障碍物。然而有障碍物的地方毕竟还是少数,或者说,地图是稀疏的。

  对于3维数据而言,我们用3维的空间来描述显然不划算,由其是当空间巨大时。此时我们选择的地图,或者说是数据结构是kd-tree 与 OcTree. 此部分内容在点云相关博客中有过介绍,不赘述。

  

    

机器人学 —— 机器人感知(Mapping)的更多相关文章

  1. 机器人学 —— 机器人感知(Kalman Filter)

    对于机器人感知任务而言,经常需要预判物体的运动,保证机器人在物体与自身接触之前进行规避.比如无人机与障碍物的碰撞,足球机器人判断足球的位置.预判的前提是对当前状态进行准确的估计,比如足球的速度,障碍物 ...

  2. 机器人学 —— 机器人感知(Gaussian Model)

    机器人感知是UPNN机器人专项中的最后一门课程,其利用视觉方法来对环境进行感知.与之前提到的机器人视觉不同,机器人感知更侧重于对环境物体的识别与检测.与计算机视觉不同,机器人视觉所识别的物体往往不需要 ...

  3. 机器人学 —— 机器人感知(Location)

    终于完成了Robotic SLAM 所有的内容了.说实话,课程的内容比较一般,但是作业还是挺有挑战性的.最后一章的内容是 Location. Location 是 Mapping 的逆过程.在给定ma ...

  4. 机器人学 —— 机器人视觉(Bundle Adjustment)

    今天完成了机器人视觉的所有课程以及作业,确实是受益匪浅啊! 最后一个话题是Bundle Adjustment. 机器人视觉学中,最顶尖的方法. 1.基于非线性优化的相机位姿估计 之前已经在拟合一篇中, ...

  5. Robot Perception for Indoor Navigation《室内导航中的机器人感知》

    Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...

  6. ROSCon 2016视频和幻灯片发布 ROS机器人操作系统重要参考资料

    ROSCon 2016视频和幻灯片发布 By Tully Foote on 十月19,2016 7:28 AM 全部PPT下载地址:http://pan.baidu.com/s/1gf2sn2F RO ...

  7. (转) SLAM系统的研究点介绍 与 Kinect视觉SLAM技术介绍

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我 ...

  8. 漫谈 SLAM 技术(上)

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:解洪文 导语 随着最近几年机器人.无人机.无人驾驶.VR/AR的火爆,SLAM技术也为大家熟知,被认为是这些领域的关键技术之一.本文对S ...

  9. 视觉SLAM漫谈 (三): 研究点介绍

    1. 前言 读者朋友们大家好!(很久很久)之前,我们为大家介绍了SLAM的基本概念和方法.相信大家对SLAM,应该有了基本的认识.在忙完一堆写论文.博士开题的事情之后,我准备回来继续填坑:为大家介绍S ...

随机推荐

  1. 11-13 js操作css样式

    1.Js操作css样式 Div.style.width=”100px”.在div标签内我们添加了一个style属性,并设定了width值.这种写法会给标签带来大量的style属性,跟实际项目是不符. ...

  2. 3D引擎为什么使用三角形绘制曲面

    这个问题是我第一次接触3D开发就有的疑问,最近在看<游戏引擎架构>(Game Engine Architecture),在书中找到了答案. 三角网格(Triangle Mesh),游戏开发 ...

  3. Unity中InitializeOnLoad属性的妙用

    InitializeOnLoad 属性应用的对象是 静态构造函数,它可以保证在编辑器启动的时候调用此函数.根据这个特性,可以在编辑器中设置定期的回调(帧更新),来实现类似watchFile的功能.这里 ...

  4. redis sentinel 读写分离

    redis sentinel 读写分离 https://www.jianshu.com/p/d1636776bb40

  5. update使用inner join

    一.update 基础语法 UPDATE 表名称 SET 列名称 = 新值 WHERE 列名称 = 某值 上面是我们常见的更新表的方式,其实我们还可以去另外一张表的数据来更新当前的表数据,如现在就有这 ...

  6. WPF宝典Url

    https://sourceforge.net/directory/os:windows/https://archive.codeplex.com/ https://code.msdn.microso ...

  7. java中random()函数用法介绍

    Random() 创建一个新的随机数生成器.  代码如下 复制代码 Random(long seed) 使用单个 long 种子创建一个新的随机数生成器. 我们可以在构造Random对象的时候指定种子 ...

  8. Data Model for Message Receiver

    1. Physical Data Model 2. SQL Statements drop database MessageReceiver go /*======================== ...

  9. Dynamic CRM 2016 的备份/恢复/重新部署

    参考:1.https://community.dynamics.com/crm/b/crmviking/archive/2016/02/03/backup-and-restore-strategies ...

  10. 【转】pymongo实现模糊查询

    pymongo 模糊匹配查询在mongo中这样实现 {'asr':/若琪/} 使用pymongo 两种实现方式 1.import re {'asr':re.compile('若琪')} 2.{'asr ...