Luogu P3990 [SHOI2013]超级跳马
这道题还是一道比较不可做的矩阵题
首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移:
f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2*k+1]+f[i][j-2*k+1](1<=k<=i/2)
但这样是很慢的,然后我们就可以前缀和优化
这里有两种方法,一个是用奇偶数行进行讨论,还有一种我认为是比较清晰的也比较容易理解
我们先来看一张图:
我们令f[i][j]表示前面可以转移到它的前缀和。例如图中的蓝色格子就是前6个格子的和
然后我们发现红色格子就是由蓝色格子+与它相近(i坐标差值为1)的3个黄色格子的值
然后就可以O(nm)求,但是这显然是过不了的
但是我们仔细研究一下发现每一次的转移都是等价的,所以我们用矩阵优化
由于每一列的值都和它前面两列有关,所以我们需要一个2*n*2*n的矩阵来转移,这个的话大概长这样(n=3时)
具体还是看CODE吧,然后就是常规的矩阵快速幂了
CODE
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=55,mod=30011;
int n,m;
struct Matrix
{
int n,m;
LL a[N<<1][N<<1];
inline void Dt_init(void)
{
register int i; memset(a,0,sizeof(a)); n>>=1;
for (i=1;i<=n;++i)
a[i][i+n]=a[i+n][i]=1;
for (i=1;i<=n;++i)
{
if (i^1) a[i][i-1]=1;
if (i^n) a[i][i+1]=1;
a[i][i]=1;
} n<<=1;
}
inline void cri_init(void)
{
register int i; memset(a,0,sizeof(a));
for (i=1;i<=n;++i)
a[i][i]=1;
}
};
inline Matrix mul(Matrix A,Matrix B)
{
Matrix C; C.n=A.n; C.m=B.m; memset(C.a,0,sizeof(C.a));
for (register int i=1;i<=C.n;++i)
for (register int j=1;j<=C.m;++j)
for (register int k=1;k<=A.m;++k)
C.a[i][j]=(C.a[i][j]+A.a[i][k]*B.a[k][j])%mod;
return C;
}
inline Matrix quick_pow(Matrix A,int p)
{
Matrix T; T.n=T.m=A.n; T.cri_init();
while (p)
{
if (p&1) T=mul(T,A);
A=mul(A,A); p>>=1;
}
return T;
}
int main()
{
scanf("%d%d",&n,&m);
Matrix A; A.n=A.m=n<<1; A.Dt_init();
A=quick_pow(A,m-2);
printf("%lld",(A.a[n][1]+A.a[n-1][1])%mod);
return 0;
}
Luogu P3990 [SHOI2013]超级跳马的更多相关文章
- BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...
- 洛谷 P3990 [SHOI2013]超级跳马 解题报告
P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...
- P3990 [SHOI2013]超级跳马
传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...
- [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- [BZOJ 4417][Shoi2013]超级跳马
4417: [Shoi2013]超级跳马 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 379 Solved: 230[Submit][Status ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- BZOJ4417: [Shoi2013]超级跳马
Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...
- 【BZOJ4417】: [Shoi2013]超级跳马
题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...
- 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法
题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法. ...
随机推荐
- Linux 学习笔记之超详细基础linux命令 Part 4
Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 3----------------- ...
- 国网SGCC_UAP 反编译.class文件源代码
SGCC_UAP和eclipse操作方式差不多,对于用惯了IDEA和Android Studio的人来说非常不方便,按住Ctrl点击类名不能查看源码. 因为jar包下都是.class文件,所以需要安装 ...
- multipart/form-data文件上传
form表单的enctype属性:规定了form表单数据在发送到服务器时候的编码方式 application/x-www-form-urlencoded:默认编码方式 multipart/form-d ...
- python 3.3.2报错:No module named 'urllib2'
ModuleNotFoundError: No module named 'urllib3' 1. ImportError: No module named 'cookielib'1 Python3中 ...
- Web的攻击技术笔记
HTTP不具备必要的安全功能,就是一个通用的单纯协议机制,比如远程登录时会用到的SSH协议来说,SSH具备协议级别的认证及回话管理等功能,HTTP协议则没有.另外在架设SSH服务方面,任何人都可以轻易 ...
- VS 2015连接SQL server数据库方法
vs新建一个Windows窗口应用程序,界面布局如下: Form1.cs中代码如下: using System; using System.Collections.Generic; using Sys ...
- HighCharts初测试
把HighChart嵌入到博客中.
- January 03rd, 2018 Week 01st Wednesday
My existence is not without reason. I know that I could be a quite a different person. 我的存在必定有意义,我知道 ...
- java用星星符号打印出一个直角三角形
package debug; public class Demo10 { public static void main(String[] args) { //用星星符号打印出一个直角三角形 for( ...
- 如何自定义FusionCharts图表上的工具提示?
中的工具提示是什么?当鼠标悬停在一个特定的数据点上时就会显示工具提示,提示以下信息: 单系列图表(饼图和圆环除外):名称及数值 Pie & Doughnut:名称及数值/百分比 多系列组合图表 ...