▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题

● 无环图最短 / 最长路径通用程序

 package package01;

 import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Topological;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.Stack; public class class01
{
private double[] distTo; // 起点到各顶点的距离
private DirectedEdge[] edgeTo; // 引入各顶点时引入的边 public class01(EdgeWeightedDigraph G, int s)
{
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY; // 求最长路径时改为 distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
Topological topological = new Topological(G); // 堆图 G 进行拓扑排序
if (!topological.hasOrder())
throw new IllegalArgumentException("\n<Constructor> Digraph is not acyclic.\n");
for (int v : topological.order()) // 依照拓扑顺序松弛每条边
{
for (DirectedEdge e : G.adj(v))
relax(e);
}
} private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) // 加入这条边会使起点到 w 的距离变短
{ // 求最长路径时将其改为 if (distTo[w] < distTo[v] + e.weight())
distTo[w] = distTo[v] + e.weight(); // 确认加入该边
edgeTo[w] = e;
}
} public double distTo(int v)
{
return distTo[v];
} public boolean hasPathTo(int v)
{
return distTo[v] < Double.POSITIVE_INFINITY;// 求最长路径时将其改为 return distTo[v] < Double.POSITIVE_INFINITY;
} public Iterable<DirectedEdge> pathTo(int v)
{
if (!hasPathTo(v))
return null;
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
class01 sp = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (sp.hasPathTo(v))
{
StdOut.printf("%d to %d (%.2f) ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e + " ");
StdOut.println();
}
else
StdOut.printf("%d to %d no path\n", s, v);
}
}
}

● 关键路径方法(critical path method)解决任务调度问题

 package package01;

 import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.AcyclicLP;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph; public class class01
{
private class01() {} public static void main(String[] args)
{
int n = StdIn.readInt(); // 任务数
int source = 2 * n; // 0 ~ n-1 为各任务起点,n ~ 2n-1 为各任务终点
int sink = 2 * n + 1; // 2n 为总起点,2n + 1 为总终点
EdgeWeightedDigraph G = new EdgeWeightedDigraph(2 * n + 2);
for (int i = 0; i < n; i++)
{
double duration = StdIn.readDouble(); // 第一列,任务耗时
G.addEdge(new DirectedEdge(source, i, 0.0)); // 总起点到任务起点的边
G.addEdge(new DirectedEdge(i + n, sink, 0.0)); // 任务终点到总终点的边
G.addEdge(new DirectedEdge(i, i + n, duration)); // 任务起点到任务终点的边 int m = StdIn.readInt(); // 以该任务完成为前提的其他任务数
for (int j = 0; j < m; j++)
{
int precedent = StdIn.readInt(); // 后续任务的编号
G.addEdge(new DirectedEdge(n + i, precedent, 0.0)); // 添加本任务终点到后续任务起点的边
}
} AcyclicLP lp = new AcyclicLP(G, source); // 生成最长路径图,尽量选权值较大的边意味着尽量把任务往前靠
StdOut.println(" job start finish");
StdOut.println("--------------------");
for (int i = 0; i < n; i++)
StdOut.printf("%4d %7.1f %7.1f\n", i, lp.distTo(i), lp.distTo(i + n));
StdOut.printf("Finish time: %7.1f\n", lp.distTo(sink));
}
}

《算法》第四章部分程序 part 17的更多相关文章

  1. 《算法》第四章部分程序 part 19

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...

  2. 《算法》第四章部分程序 part 18

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...

  3. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  4. 《算法》第四章部分程序 part 15

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...

  5. 《算法》第四章部分程序 part 14

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...

  6. 《算法》第四章部分程序 part 10

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...

  7. 《算法》第四章部分程序 part 9

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...

  8. 《算法》第四章部分程序 part 13

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...

  9. 《算法》第四章部分程序 part 12

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...

随机推荐

  1. PerformEraseBackground 擦除背景(ThemeServices)

    PerformEraseBackground 擦除背景的简单方法(外带ThemeServices例子) 在查这个函数的时候,顺便看到了有趣的代码. 怎么使用 Themes . unit Unit2; ...

  2. ALGO-126_蓝桥杯_算法训练_水仙花

    问题描述 判断给定的三位数是否 水仙花 数.所谓 水仙花 数是指其值等于它本身 每位数字立方和的数.例 就是一个 水仙花 数. =++ 输入格式 一个整数. 输出格式 是水仙花数,输出"YE ...

  3. 导入数据库时出现ORA-01435: 用户不存在

    报错信息: IMP-00003: 遇到 ORACLE 错误 1435 ORA-01435: 用户不存在 成功终止导入,但出现警告. 我的导入脚本为: imp system/*****@min file ...

  4. 【分布式session】Spring-session的使用

    概述 Session用于保存用户信息,通常一个Session保存一个用户信息,在以Tomcat为Servlet Container的web应用中,用户信息都保存在HttpSession中: 当用户发起 ...

  5. 【Java】线程转储分析 ThreadDump

    [[TOC]] 通过分析 ThreadDump 来查询Java程序运行情况 获取线程转储文件 有多种方式可以获取转储文件,可参考链接HOW TO TAKE THREAD DUMPS? – 8 OPTI ...

  6. linux下recv 、send阻塞、非阻塞区别和用法

    非阻塞IO 和阻塞IO: 在网络编程中对于一个网络句柄会遇到阻塞IO 和非阻塞IO 的概念, 这里对于这两种socket 先做一下说明:       基本概念: 阻塞IO:: socket 的阻塞模式 ...

  7. C语言强化——指针

    目录 相关概念 数组与函数 栈空间和堆空间的差异 指针常量与常量指针 指针数组与数组指针 二级指针 二级指针的传递 二级指针的偏移(索引式排序) 相关概念 指针的大小,在32系统上是4个字节:在64位 ...

  8. [UE4]函数参数引用

    函数传递的变量可以当做正常的内部变量使用,而不需要把函数变量赋值给新创建一个内部变量.

  9. JDK8 Java 中遇到null 和为空的情况,使用Optional来解决。

    空指针是我们最常见也最讨厌的异常,写过 Java 程序的同学,一般都遇到过 NullPointerException :) 初识null 详细可以参考[jdk 1.6 Java.lang.Null.P ...

  10. Mybatis 系列3-结合源码解析properties节点和environments节点

    [Mybatis 系列10-结合源码解析mybatis 执行流程] [Mybatis 系列9-强大的动态sql 语句] [Mybatis 系列8-结合源码解析select.resultMap的用法] ...