《算法》第四章部分程序 part 17
▶ 书中第四章部分程序,包括在加上自己补充的代码,无环图最短 / 最长路径通用程序,关键路径方法(critical path method)解决任务调度问题
● 无环图最短 / 最长路径通用程序
package package01; import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.Topological;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph;
import edu.princeton.cs.algs4.Stack; public class class01
{
private double[] distTo; // 起点到各顶点的距离
private DirectedEdge[] edgeTo; // 引入各顶点时引入的边 public class01(EdgeWeightedDigraph G, int s)
{
distTo = new double[G.V()];
edgeTo = new DirectedEdge[G.V()];
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY; // 求最长路径时改为 distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
Topological topological = new Topological(G); // 堆图 G 进行拓扑排序
if (!topological.hasOrder())
throw new IllegalArgumentException("\n<Constructor> Digraph is not acyclic.\n");
for (int v : topological.order()) // 依照拓扑顺序松弛每条边
{
for (DirectedEdge e : G.adj(v))
relax(e);
}
} private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight()) // 加入这条边会使起点到 w 的距离变短
{ // 求最长路径时将其改为 if (distTo[w] < distTo[v] + e.weight())
distTo[w] = distTo[v] + e.weight(); // 确认加入该边
edgeTo[w] = e;
}
} public double distTo(int v)
{
return distTo[v];
} public boolean hasPathTo(int v)
{
return distTo[v] < Double.POSITIVE_INFINITY;// 求最长路径时将其改为 return distTo[v] < Double.POSITIVE_INFINITY;
} public Iterable<DirectedEdge> pathTo(int v)
{
if (!hasPathTo(v))
return null;
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;
} public static void main(String[] args)
{
In in = new In(args[0]);
int s = Integer.parseInt(args[1]);
EdgeWeightedDigraph G = new EdgeWeightedDigraph(in);
class01 sp = new class01(G, s);
for (int v = 0; v < G.V(); v++)
{
if (sp.hasPathTo(v))
{
StdOut.printf("%d to %d (%.2f) ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e + " ");
StdOut.println();
}
else
StdOut.printf("%d to %d no path\n", s, v);
}
}
}
● 关键路径方法(critical path method)解决任务调度问题
package package01; import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.AcyclicLP;
import edu.princeton.cs.algs4.DirectedEdge;
import edu.princeton.cs.algs4.EdgeWeightedDigraph; public class class01
{
private class01() {} public static void main(String[] args)
{
int n = StdIn.readInt(); // 任务数
int source = 2 * n; // 0 ~ n-1 为各任务起点,n ~ 2n-1 为各任务终点
int sink = 2 * n + 1; // 2n 为总起点,2n + 1 为总终点
EdgeWeightedDigraph G = new EdgeWeightedDigraph(2 * n + 2);
for (int i = 0; i < n; i++)
{
double duration = StdIn.readDouble(); // 第一列,任务耗时
G.addEdge(new DirectedEdge(source, i, 0.0)); // 总起点到任务起点的边
G.addEdge(new DirectedEdge(i + n, sink, 0.0)); // 任务终点到总终点的边
G.addEdge(new DirectedEdge(i, i + n, duration)); // 任务起点到任务终点的边 int m = StdIn.readInt(); // 以该任务完成为前提的其他任务数
for (int j = 0; j < m; j++)
{
int precedent = StdIn.readInt(); // 后续任务的编号
G.addEdge(new DirectedEdge(n + i, precedent, 0.0)); // 添加本任务终点到后续任务起点的边
}
} AcyclicLP lp = new AcyclicLP(G, source); // 生成最长路径图,尽量选权值较大的边意味着尽量把任务往前靠
StdOut.println(" job start finish");
StdOut.println("--------------------");
for (int i = 0; i < n; i++)
StdOut.printf("%4d %7.1f %7.1f\n", i, lp.distTo(i), lp.distTo(i + n));
StdOut.printf("Finish time: %7.1f\n", lp.distTo(sink));
}
}
《算法》第四章部分程序 part 17的更多相关文章
- 《算法》第四章部分程序 part 19
▶ 书中第四章部分程序,包括在加上自己补充的代码,有边权有向图的邻接矩阵,FloydWarshall 算法可能含负环的有边权有向图任意两点之间的最短路径 ● 有边权有向图的邻接矩阵 package p ...
- 《算法》第四章部分程序 part 18
▶ 书中第四章部分程序,包括在加上自己补充的代码,在有权有向图中寻找环,Bellman - Ford 算法求最短路径,套汇算法 ● 在有权有向图中寻找环 package package01; impo ...
- 《算法》第四章部分程序 part 16
▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...
- 《算法》第四章部分程序 part 15
▶ 书中第四章部分程序,包括在加上自己补充的代码,Kruskal 算法和 Boruvka 算法求最小生成树 ● Kruskal 算法求最小生成树 package package01; import e ...
- 《算法》第四章部分程序 part 14
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种 Prim 算法求最小生成树 ● 简单 Prim 算法求最小生成树 package package01; import edu.princeton ...
- 《算法》第四章部分程序 part 10
▶ 书中第四章部分程序,包括在加上自己补充的代码,包括无向图连通分量,Kosaraju - Sharir 算法.Tarjan 算法.Gabow 算法计算有向图的强连通分量 ● 无向图连通分量 pack ...
- 《算法》第四章部分程序 part 9
▶ 书中第四章部分程序,包括在加上自己补充的代码,两种拓扑排序的方法 ● 拓扑排序 1 package package01; import edu.princeton.cs.algs4.Digraph ...
- 《算法》第四章部分程序 part 13
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的前序.后序和逆后续遍历,以及传递闭包 ● 图的前序.后序和逆后续遍历 package package01; import edu.princeto ...
- 《算法》第四章部分程序 part 12
▶ 书中第四章部分程序,包括在加上自己补充的代码,图的几种补充数据结构,包括无向 / 有向符号图,有权边结构,有边权有向图 ● 无向符号图 package package01; import edu. ...
随机推荐
- 黑域,黑阈 Permission denied
在执行: adb -d shell sh /data/data/me.piebridge.brevent/brevent.sh 时遇到Permission denied,多运行一次就好了. 完整的有两 ...
- mirror op 如果在windows receiver上是黑屏
mirror op 如果在windows receiver上是黑屏,手机上要重启下再打开mirror op.(手机是一加3 安卓7.0)
- PHP操作mongoDB 笔记
转自 http://blog.csdn.net/black_ox/article/details/22678747 命令也可以在参考http://www.jb51.net/article/51601. ...
- js中的 Table 对象
Table 对象Table 对象代表一个 HTML 表格.在 HTML 文档中 <table> 标签每出现一次,一个 Table 对象就会被创建. Table 对象集合cells[] ...
- 黄聪:微信公众平台开发OAuth2.0网页授权(转)
微信公众平台开发 OAuth2.0网页授权认证 网页授权获取用户基本信息 作者:方倍工作室 微信公众平台最近新推出微信认证,认证后可以获得高级接口权限,其中一个是OAuth2.0网页授权,很多朋友在使 ...
- IDEA运行tomcat8.5.35源代码
前提环境,安装和配置好java1.8+环境,maven,IDEA 1.下载Tomcat源代码:https://tomcat.apache.org/download-80.cgi#8.5.35 2.创建 ...
- TCP:WireShark分析,序列号Seq和确认号Ack
转载自 http://blog.csdn.net/a19881029/article/details/38091243 序列号为当前端成功发送的数据位数,确认号为当前端成功接收的数据位数,SYN标志位 ...
- 廖雪峰Java1-2程序基础-9数组
数组初识 1.数组的特点: 数组所有元素初始化默认值,int默认值为0 数组创建后大小不可改变 数组索引从0开始 数组是引用类型 使用索引下标访问数组元素,索引超出范围会报错 2.数组的定义: 类型[ ...
- 父级元素position:absolute,子节点也是absolute
当父级属性position是absolute,子节点也是absolute的时候,子节点是相对父级absolute的,举个例子 <div class="headManage"& ...
- 1127 ZigZagging on a Tree (30 分)
1127 ZigZagging on a Tree (30 分) Suppose that all the keys in a binary tree are distinct positive in ...