Hbase

定义

  • HBase是一个开源的非关系型分布式数据库(NoSQL),它参考了谷歌的BigTable建模,实现 的编程语言为 Java。

  • 是Apache软件基金会的Hadoop项目的一部分,运行于HDFS文件系统之上,因此可以容错地存 储海量稀疏的数据

特点

  • 高可靠

  • 高并发读写

  • 面向列

  • 可伸缩

  • 易构建

行存储

  • 优点:写入一次性完成,保持数据完整性

  • 缺点:数据读取过程中产生冗余数据,若有少量数据可以忽略

列存储

  • 优点:读取过程,不会产生冗余数据,特别适合对数据完整性要求不高的大数据领域

  • 缺点:写入效率差,保证数据完整性方面差

优势

  • 海量数据存储

  • 快速随机访问

  • 大量写操作的应用

  • 互联网搜索引擎数据存储

  • 海量数据写入

  • 消息中心

  • 内容服务系统(schema-free)

  • 大表复杂&多维度索引

  • 大批量数据读取

数据模型

行键 时间戳 列族contents 列族anchor 列族mime
“com.cnn.www” t9   anchor:cnnsi.com="CNN"  
  t8   anchor:my.look.ca="CNN.com"  
  t6 contents:html=""   mime:type="text/html"
  t5 contents:html=""    
  t3 contents:html=""    
  • RowKey:是Byte array,是表中每条记录的“主键”,方便快速查找,Rowkey的设计非常重要。

  • Column Family:列族,拥有一个名称(string),包含一个或者多个相关列

  • Column:属于某一个columnfamily,familyName:columnName,每条记录可动态添加

  • Version Number:类型为Long,默认值是系统时间戳,可由用户自定义

  • Value(Cell):Byte array

三维有序

  • {rowkey => {family => {qualifier => {version => value}}}}

  • a:cf1:bar:1368394583:7

  • a:cf1:foo:1368394261:hello

物理模型

  • Hbase一张表由一个或多个 Hregion组成

  • 记录之间按照Row Key的字典 序排列

  • Region按大小分割的,每个表 一开始只有一个region,随着 数据不断插入表,region不断 增大,当增大到一个阀值的时 候,Hregion就会等分会两个 新的Hregion。当table中的行 不断增多,就会有越来越多的 Hregion。

  • 表 -> HTable

  • 按RowKey范围分的Region-> HRegion ->Region Servers

  • HRegion按列族(Column Family) ->多个HStore

  • HStore -> memstore + HFiles(均为有序的KV)

  • HFiles -> HDFS

  • HRegion是Hbase中分布式存 储和负载均衡的最小单元

  • 最小单元就表示不同的 Hregion可以分布在不同的 HRegion server上。

  • 但一个Hregion是不会拆分到 多个server上的。

  • HRegion虽然是分布式存储的 最小单元,但并不是存储的最 小单元。

系统架构

Client

  • 访问Hbase的接口,并维护Cache加速Region Server的访问

Master

  • 负载均衡,分配Region到RegionServer

  • DDL:增删改-> table,cf,namespace

  • 类似namenode,管理一些元数据,table

  • ACL权限控制

Region Server

  • 管理和存储本地的HRegion

  • 维护Region,负责Region的IO请求

  • 本地化:HRegion的数据尽量和数据所属的DataNode在一块,但是这个本地化不能够总是满足和实现

Zookeeper

  • 保证集群中只有一个Master

  • 存储所有Region的入口(ROOT)地址

  • 实时监控Region Server的上下线信息,并通知Master

系统架构图

容错

  • ZooKeeper协调集群所有节点的共享信息,在HMaster和HRegionServer连接到ZooKeeper后 创建Ephemeral节点,并使用Heartbeat机制维持这个节点的存活状态,如果某个Ephemeral节 点实效,则HMaster会收到通知,并做相应的处理。

  • 除了HDFS存储信息,HBase还在Zookeeper中存储信息,其中的znode信息:

    • – /hbase/root-region-server ,Root region的位置

    • – /hbase/table/-ROOT-,根元数据信息

    • – /hbase/table/.META.,元数据信息

    • – /hbase/master,当选的Mater

    • – /hbase/backup-masters,备选的Master

    • – /hbase/rs ,Region Server的信息

    • – /hbase/unassigned,未分配的Region

Master容错

  • Zookeeper重新选择一个新的Master

    • 无Master过程中,数据读取仍照常进行;

    • 无master过程中,region切分、负载均衡等无法进行

Region Server容错

  • 定时向Zookeeper汇报心跳,如果一旦时间内未出现心跳,Master将该RegionServer上的 Region重新分配到其他RegionServer上,失效服务器上“预写”日志由主服务器进行分割 并派送给新的RegionServer

Zookeeper容错

  • Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例

WAL(Write-Ahead-Log)预写日志

  • 是Hbase的RegionServer在处 理数据插入和删除的过程中用 来记录操作内容的一种日志

  • 在每次Put、Delete等一条记录 时,首先将其数据写入到 RegionServer对应的HLog文件的过程

  • 客户端往RegionServer端提交数据的时候,会写WAL日志,只有当WAL日志写成功以后,客户端才会被告诉 提交数据成功,如果写WAL失败会告知客户端提交失败

  • 数据落地的过程

  • 在一个RegionServer上的所有的Region都共享一个 HLog,一次数据的提交是先写WAL,写入成功后,再 写memstore。当memstore值到达一定阈值,就会形 成一个个StoreFile(理解为HFile格式的封装,本质上 还是以HFile的形式存储的)

操作

  • 基本的单行操作:PUT,GET,DELETE

  • 扫描一段范围的Rowkey: SCAN

    • – 由于Rowkey有序而让Scan变得有效

  • GET和SCAN支持各种Filter,将逻辑推给Region Server – 以此为基础可以实现复杂的查询

  • 支持一些原子操作:INCREMENT、APPEND、CheckAnd{Put,Delete}

  • MapReduce

  • 注:在单行上可以加锁,具备强一致性。这能满足很多应用的需求。

特殊表

  • -ROOT- 表和.META.表是两个比较特殊的表

  • .META.记录了用户表的 Region信息,.META.可以有多个regoin

  • -ROOT-记录了.META.表的 Region信息,-ROOT-只有一 个region,Zookeeper中记录 了-ROOT-表的location

  • Hbase 0.96之后去掉了-ROOT- 表,因为: – 三次请求才能直到用户Table真正所在的位置也是性能低下的 – 即使去掉-ROOT- Table,也还可以支持2^17(131072)个Hregion,对于集群来说,存 储空间也足够

  • 所以目前流程为:

    • – 从ZooKeeper(/hbase/meta-region-server)中获取hbase:meta的位置( HRegionServer的位置),缓存该位置信息

    • – 从HRegionServer中查询用户Table对应请求的RowKey所在的HRegionServer,缓存该 位置信息

    • – 从查询到HRegionServer中读取Row。

写入流程

寻址

  • 从这个过程中,我们发现客户会缓存 这些位置信息,然而第二步它只是缓 存当前RowKey对应的HRegion的位 置,因而如果下一个要查的RowKey 不在同一个HRegion中,则需要继续 查询hbase:meta所在的HRegion, 然而随着时间的推移,客户端缓存的 位置信息越来越多,以至于不需要再 次查找hbase:meta Table的信息,除 非某个HRegion因为宕机或Split被移 动,此时需要重新查询并且更新缓存

  • hbase:meta表存储了所有用户HRegion的位置信息

写入流程

  • 当客户端发起一个Put请求时,首先它从hbase:meta表中查出该Put数据最终需要去的 HRegionServer。然后客户端将Put请求发送给相应的HRegionServer,在HRegionServer中 它首先会将该Put操作写入WAL日志(Flush到磁盘中)。

  • Memstore是一个写缓存,每一个Column Family有一个自己的MemStore

  • 写完WAL日志文件后,HRegionServer根据Put中的TableName和RowKey找到对应的 HRegion,并根据Column Family找到对应的HStore,并将Put写入到该HStore的MemStore 中。此时写成功,并返回通知客户端

  • MemStore是一个In Memory Sorted Buffer,在每个HStore中都有一个MemStore,即它是 一个HRegion的一个Column Family对应一个实例。它的排列顺序以RowKey、Column Family、Column的顺序以及Timestamp的倒序。

读取流程

  • HBase中扫瞄的顺序依次是:BlockCache、MemStore、StoreFile(HFile)

Compaction和Split

  • 问题:随着写入不断增多,flush次数不断增多,Hfile文件越来越多,所以Hbase需要对这些文件进行 合并

  • Compaction会从一个region的一个store中选择一些hfile文件进行合并。合并说来原理很简单,先 从这些待合并的数据文件中读出KeyValues,再按照由小到大排列后写入一个新的文件中。之后,这 个新生成的文件就会取代之前待合并的所有文件对外提供服务 。

  • Minor Compaction:是指选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,在 这个过程中不会处理已经Deleted或Expired的Cell。一次Minor Compaction的结果是更少并且更大 的StoreFile 。

  • Major Compaction:是指将所有的StoreFile合并成一个StoreFile,这个过程还会清理三类无意义 数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据 。

  • Major Compaction时间会持续比较长,整个过程会消耗大量系统资源,对上层业务有比较大的影响 。因此线上业务都会将关闭自动触发Major Compaction功能,改为手动在业务低峰期触发。

  • Compaction本质:使用短时间的IO消耗以及带宽消耗换取后续查询的低延迟 。

  • compact的速度远远跟不上HFile生成的速度,这样就会使HFile的数量会越来越多,导致读性 能急剧下降。为了避免这种情况,在HFile的数量过多的时候会限制写请求的速度。

  • Split – 当一个Region太大时,将其分裂成两个Region 。

  • Split和Major Compaction可以手动或者自动做。

初始Hbase的更多相关文章

  1. HBase篇--初始Hbase

    一.前述 1.HBase,是一个高可靠性.高性能.面向列.可伸缩.实时读写的分布式数据库.2.利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce来处理HBase中的海量 ...

  2. 用Hbase存储Log4j日志数据:HbaseAppender

    业务需求: 需求很简单,就是把多个系统的日志数据统一存储到Hbase数据库中,方便统一查看和监控. 解决思路: 写针对Hbase存储的Log4j Appender,有一个简单的日志储存策略,把Log4 ...

  3. hbase官方文档(转)

    FROM:http://www.just4e.com/hbase.html Apache HBase™ 参考指南  HBase 官方文档中文版 Copyright © 2012 Apache Soft ...

  4. HBase官方文档

    HBase官方文档 目录 序 1. 入门 1.1. 介绍 1.2. 快速开始 2. Apache HBase (TM)配置 2.1. 基础条件 2.2. HBase 运行模式: 独立和分布式 2.3. ...

  5. Nutch相关框架安装使用最佳指南(转帖)

    Nutch相关框架安装使用最佳指南 Chinese installing and using instruction  -  The best guidance in installing and u ...

  6. hbase协处理器编码实例

    Observer协处理器通常在一个特定的事件(诸如Get或Put)之前或之后发生,相当于RDBMS中的触发器.Endpoint协处理器则类似于RDBMS中的存储过程,因为它可以让你在RegionSer ...

  7. 设计与开发一款简单易用的Web报表工具(支持常用关系数据及hadoop、hbase等)

    EasyReport是一个简单易用的Web报表工具(支持Hadoop,HBase及各种关系型数据库),它的主要功能是把SQL语句查询出的行列结构转换成HTML表格(Table),并支持表格的跨行(Ro ...

  8. HBASE数据模型&扩展和负载均衡理论

    示例数据模型 HBase中扩展和负载均衡的基本单元成为region,region本质上是以行健排序的连续存储区间.如果region太大,系统会把它们 自动拆分,相反的,就是把多个region合并,以减 ...

  9. HBase自动分区

    HBase扩展和负载均衡的基本单位是Region.Region从本质上说是行的集合.当Region的大小达到一定的阈值,该Region会自动分裂(split),当然也可能是合并(merge),合并可以 ...

随机推荐

  1. gulp中pipe的作用和来源

    gulp的pipe方法是来自nodejs stream API的,并不是gulp本身源码所定义的. 一.pipe方法的作用 pipe跟他字面意思一样只是一个管道 例如我有一堆文件 var s = gu ...

  2. spring boot (三): 热部署

    介绍了Spring boot实现热部署的两种方式,这两种方法分别是使用 Spring Loaded和使用spring-boot-devtools进行热部署. 热部署是什么 大家都知道在项目开发过程中, ...

  3. Java.Annotations

    Annotation 0. Annotation Tricks http://developer.android.com/reference/java/lang/annotation/Annotati ...

  4. CSS中(font和background)的简写形式

    转自:http://blog.csdn.net/shenzhennba/article/details/7356095 1.字体属性主要包括下面几个:font-family(字体族): “Arial” ...

  5. PS合成的5个要点:场景、对比、氛围、模糊、纹理

    是否觉得做合成打开PS之后无处下手,做完之后总觉得缺少故事情节?这一次分享的5个要点,是个人觉得需要重视的,每一点都有一个案例来让作品变得多一份惊喜.(申明:文中素材均来自网络,这里仅作分享交流作用) ...

  6. Python之路(第二十四篇) 面向对象初级:多态、封装

    一.多态 多态 多态:一类事物有多种形态,同一种事物的多种形态,动物分为鸡类,猪类.狗类 例子 import abc class H2o(metaclass=abc.ABCMeta): ​ def _ ...

  7. python 的文件操作

    二进制用法 f=open('test.txt','wb') f.write("汉字\r\n".encode('UTF-8')) f.write("hello". ...

  8. 之前的一些Oracle的经验总结

    1. 安装: 1) 关于字符集的选择,现在还不很了解,修改是需要进入一个模式下才可以修改,当然新建一个数据库实例的时候可以重新设定: UTF8是相对比较大的一个字符集, 可以简单实用这个就能保存很多的 ...

  9. python入门之文件处理

    1.读取文件 f=open(file="C:\BiZhi\新建文本文档.txt",mode="r",encoding="utf-8") da ...

  10. Alpha 冲刺 (4/10)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前后端接口的开发 测试项目运行的服务器环 ...