http://acm.hdu.edu.cn/showproblem.php?pid=3915

这道题目是和博弈论挂钩的高斯消元。本题涉及的博弈是nim博弈,结论是:当先手处于奇异局势时(几堆石子数相互异或为0),其必败。

思路在这里,最后由于自由变元能取1、0两种状态,所以,最终答案是2^k,k表示自由变元的个数。

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <map>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
#define clr1(x) memset(x,-1,sizeof(x))
#define eps 1e-9
const double pi = acos(-1.0);
typedef long long LL;
typedef unsigned long long ULL;
const int modo = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int inf = 0x3fffffff;
const LL _inf = 1e18;
const int maxn = 1005,maxm = 10005; #define MAXN 110
#define MOD 1000007
#define weishu 31
LL a[MAXN], g[MAXN][MAXN];
int Gauss(int n) {
int i, j, r, c, cnt;
for (c = cnt = 0; c < n; c++) {
for (r = cnt; r < weishu; r++) {
if (g[r][c])
break;
}
if (r < weishu) {
if (r != cnt) {
for (i = 0; i < n; i++)
swap(g[r][i], g[cnt][i]);
}
for (i = cnt + 1; i < weishu; i++) {
if (g[i][c]) {
for (j = 0; j < n; j++)
g[i][j] ^= g[cnt][j];
}
}
cnt++;
}
}
return n - cnt;
}
int main() {
int c;
int n, i, j;
int ans, vary;
scanf("%d", &c);
while (c--) {
int fuck = 0;
scanf("%d", &n);
for (i = 0; i < n; i++){
scanf("%I64d", &a[i]);
fuck ^= a[i];
}
for (i = 0; i < weishu; i++) {
for (j = 0; j < n; j++)
g[i][j] = (a[j] >> i) & 1;
}
vary = Gauss(n);
LL ans = 1;
while(vary--){
ans <<= 1;
ans %= MOD;
}
printf("%I64d\n",ans);
}
return 0;
}

hdu 3915 高斯消元的更多相关文章

  1. HDU 2827 高斯消元

    模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...

  2. HDU 3359 高斯消元模板题,

    http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...

  3. [置顶] hdu 4418 高斯消元解方程求期望

    题意:  一个人在一条线段来回走(遇到线段端点就转变方向),现在他从起点出发,并有一个初始方向, 每次都可以走1, 2, 3 ..... m步,都有对应着一个概率.问你他走到终点的概率 思路: 方向问 ...

  4. HDU 4418 高斯消元解决概率期望

    题目大意: 一个人在n长的路径上走到底再往回,走i步停下来的概率为Pi , 求从起点开始到自己所希望的终点所走步数的数学期望 因为每个位置都跟后m个位置的数学期望有关 E[i] = sigma((E[ ...

  5. hdu 5088 高斯消元n堆石子取k堆石子使剩余异或值为0

    http://acm.hdu.edu.cn/showproblem.php?pid=5088 求能否去掉几堆石子使得nim游戏胜利 我们可以把题目转化成求n堆石子中的k堆石子数异或为0的情况数.使用x ...

  6. HDU 3364 高斯消元

    Lanterns Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

  7. hdu 2262 高斯消元求期望

    Where is the canteen Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  8. hdu 4418 高斯消元求期望

    Time travel Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...

随机推荐

  1. HTML知识基础

    HTML 超文本标记语言(Hyper  Text  Markup Language):是一种用于创建网页的标准标记语言. Hyper  Text:指具有交互功能文本. Markup Language: ...

  2. Liunx ls命令

    ls命令是linux下最常用的命令.ls命令就是list的缩写缺省下ls用来打印出当前目录的清单如果ls指定其他目录那么就会显示指定目录里的文件及文件夹清单. 通过ls 命令不仅可以查看linu ...

  3. hdu 5461(2015沈阳网赛 简单暴力) Largest Point

    题目;http://acm.hdu.edu.cn/showproblem.php?pid=5461 题意就是在数组中找出a*t[i]*t[i]+b*t[j]的最大值,特别注意的是这里i和i不能相等,想 ...

  4. linux系统中的进程状态分析

    转载地址:https://blog.csdn.net/shenwansangz/article/details/51981459 linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序, ...

  5. Cannot switch on a value of type String for source level below 1.7. Only convertible int values or enum variables are permitted

    在java中写switch代码时,参数用的是string,jdk用的是1.8,但是还是报错,说不支持1.7版本以下的,然后查找了项目中的一些文件,打开一个文件如下,发现是1.6的版本,好奇怪啊,按照e ...

  6. nodejs buffer 内存泄漏问题

    摘自<Node.js 高级编程> var buffer = new Buffer("this is the content of my buffer"); var sm ...

  7. 常用MFC宏

    最近我在用MFC开发一个智能家居监控平台的软件(用到了MSCOMM串口通信控件),当我通过在一个对话框类A中定义另一个对话框类B的对象访问B的public成员时,提示不可访问.后来经过多天的向朋友求救 ...

  8. 网页定时器setTimeout( )

    不斷重複執行的 setTimeout( ) setTimeout( ) 預設只是執行一次, 但我們可以使用一個循環方式, 使到一個setTimeout( ) 再啟動自己一次, 就會使到第二個 setT ...

  9. MySQL自带的4个数据库

    安装完 MySQL 后会发现有四个自带的数据库: information_schema -- 该数据库保存了 MySQL 服务器所有数据库的信息.比如数据库的名称.数据库中的表名称.访问权限.数据库中 ...

  10. Increase PHP script execution time with Nginx

    If you have a large WordPress setup or a server with limited resources, then you will often see the ...