题目大意:给定一个长度为 N 的序列,点有点权,从序列中选出恰好 X 个数,并且保证任意连续的 K 个数中均有一个被选中,求选出的点权最大是多少。

题解:此题可以作为 烽火传递+ 来处理,只不过在烽火传递的基础上加了选出恰好 X 个数,因此只需在状态维度上加上一维选出的个数即可,\(dp[i][j]\) 表示前 i 个数中选出 j 个数,且第 i 个数被选中的最优解,因此有状态转移方程:\(dp[i][j]=max\{dp[k][j-1],k\in[i-m,i-1] \}+val[i]\),直接用单调队列进行优化即可。

同时,可以直接在初始化的时候将所有值设为无穷,避免了无效的状态转移,从而避免了不合法的解对答案的贡献,也就避免了讨论何时输出 -1 的问题。

代码如下

#include<bits/stdc++.h>
using namespace std;
const int maxn=5010; int n,m,tot,val[maxn],q[maxn<<1],l,r;
long long dp[maxn][maxn],ans; void read_and_parse(){
scanf("%d%d%d",&n,&m,&tot);
for(int i=1;i<=n;i++)scanf("%d",&val[i]);
} void solve(){
memset(dp,0xcf,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=tot;i++){
l=1,r=0;
for(int j=1;j<=n;j++){
while(l<=r&&q[l]<j-m)++l;
while(l<=r&&dp[j-1][i-1]>dp[q[r]][i-1])--r;
q[++r]=j-1;
dp[j][i]=dp[q[l]][i-1]+val[j];
}
}
ans=-1;
for(int i=n-m+1;i<=n;i++)ans=max(ans,dp[i][tot]);
printf("%lld\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【CF1077F2】Pictures with Kittens 单调队列+dp的更多相关文章

  1. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  2. [TyvjP1313] [NOIP2010初赛]烽火传递(单调队列 + DP)

    传送门 就是个单调队列+DP嘛. ——代码 #include <cstdio> ; , t = , ans = ~( << ); int q[MAXN], a[MAXN], f ...

  3. zstu 4237 马里奥的求救——(单调队列DP)

    题目链接:http://oj.acm.zstu.edu.cn/JudgeOnline/problem.php?id=4237 这题可以转化为每次可以走g~d+x步,求最大分数,且最大分数的步数最少. ...

  4. 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP

    1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...

  5. codeforces 1077F2. Pictures with Kittens (hard version)单调队列+dp

    被队友催着上(xun)分(lian),div3挑战一场蓝,大号给基佬紫了,结果从D开始他开始疯狂教我做人??表演如何AKdiv3???? 比赛场上:A 2 分钟,B题蜜汁乱计数,结果想得绕进去了20多 ...

  6. vijos P1243 生产产品(单调队列+DP)

      P1243生产产品   描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...

  7. POJ 1821 单调队列+dp

    题目大意:有K个工人,有n个墙,现在要给墙涂色.然后每个工人坐在Si上,他能刷的最大范围是Li,且必须是一个连续子区间,而且必须过Si,他刷完后能获得Pi钱 思路:定义dp[i][j]表示前i个人,涂 ...

  8. 【LOJ#10180】烽火传递 单调队列+dp

    题目大意:给定一个 N 个非负整数数组成的序列,每个点有一个贡献值,现选出其中若干数,使得每连续的 K 个数中至少有一个数被选,要求选出的数贡献值最小. 题解:设 \(dp[i]\) 表示考虑了序列前 ...

  9. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

随机推荐

  1. 20155308『网络对抗技术』Exp5 MSF基础应用

    20155308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

  2. 《FPGA设计技巧与案例开发详解-第二版》全套资料包

    本人参与写的一本书(TimeQuest一章由我所写),希望大家多多支持: 全书配套资料上传各大网盘资料中附送大量源码,你值得拥有--<FPGA设计技巧与案例开发详解-第二版>全套资料包-V ...

  3. Python的进制等转换

    To 十进制 二进制: >>> int('110', 2) -> 6 八进制: >>> int('10', 8) -> 8 十六进制: >> ...

  4. 配置yum,nc,telnet

    一.学习中问题 最近学习在学习Hadoop的一个子项目Zookeeper,在测试其中的“四字命令”---”echo ruok|nc localhost 2181“时发现命令无法被识别,如下图所示: [ ...

  5. Centos7下不删除python2.x的情况下安装python3.x

    Linux下默认系统自带python2.X的版本,这个版本被系统很多程序所依赖,所以不建议删除,如果使用最新的Python3那么我们知道编译安装源码包和系统默认包之间是没有任何影响的,所以可以安装py ...

  6. stl源码剖析 详细学习笔记deque(2)

    //---------------------------15/3/13---------------------------- self&operator++() { ++cur; if(c ...

  7. react脚手架改造(react/react-router/redux/eslint/karam/immutable/es6/webpack/Redux DevTools)

    公司突然组织需要重新搭建一个基于node的论坛系统,前端采用react,上网找了一些脚手架,或多或少不能满足自己的需求,最终在基于YeoMan的react脚手架generator-react-webp ...

  8. (幼儿园毕业)Javascript小学级随机生成四则运算

    软件工程第二次结对作业四则运算自动生成器网页版 一.题目要求 本次作业要求两个人合作完成,驾驶员和导航员角色自定,鼓励大家在工作期间角色随时互换,这里会布置两个题目,请各组成员根据自己的爱好任选一题. ...

  9. 《Pro SQL Server Internals, 2nd edition》中CHAPTER 7 Designing and Tuning the Indexes中的Clustered Index Design Considerations一节(译)

    <Pro SQL Server Internals> 作者: Dmitri Korotkevitch 出版社: Apress出版年: 2016-12-29页数: 804定价: USD 59 ...

  10. ats 安全

    Controlling Access ats可以配置为仅允许某些客户端使用代理缓存. 1. 为ip_allow.config添加一行,以获取允许访问ats的每个IP地址或IP地址范围; 2. traf ...