其实很早以前就打好了,但一直忘记写了。

  也就是差分约束的模板题。

  关于差分约束,也就是用来求关于一些不等式互相约束算出最优解。

  推荐一个讲的很好的博客:http://www.cppblog.com/menjitianya/archive/2015/11/19/212292.html

  可以通过一个三角形不等式来搞一下:

  B - A <= c      (1)

  C - B <= a      (2)
  C - A <= b      (3)
  如果我们想要知道C - A的最大值,通过(1) + (2),可以得到 C - A <= a + c,所以这个问题其实就是求min{b, a+c}。
  所以这题只需要转换一下不等式,用SPFA来判负环(用DFS比较快)
  CODE

#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
struct data
{
int to,next,v;
}e[N];
int head[N],dis[N],n,m,opt,i,j,x,y,z,k,h,t;
bool flag=,vis[N];
inline void read(int &x)
{
x=; char ch=getchar();
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
}
inline void add(int x,int y,int z)
{
e[++k].to=y; e[k].v=z; e[k].next=head[x]; head[x]=k;
}
inline void SPFA(int k)
{
vis[k]=;
for (int i=head[k];i!=-;i=e[i].next)
if (dis[e[i].to]>dis[k]+e[i].v)
{
if (vis[e[i].to]) { flag=; return; } else dis[e[i].to]=dis[k]+e[i].v,SPFA(e[i].to);
}
vis[k]=;
}
int main()
{
read(n); read(m);
memset(e,-,sizeof(e));
memset(head,-,sizeof(head));
for (i=;i<=m;++i)
{
read(opt);
if (opt==) read(x),read(y),read(z),add(x,y,-z);
if (opt==) read(x),read(y),read(z),add(y,x,z);
if (opt==) read(x),read(y),add(x,y,),add(y,x,);
}
for (i=;i<=n;++i)
{
if (flag) break;
memset(dis,,sizeof(dis));
SPFA(i);
}
if (flag) puts("No"); else puts("Yes");
return ;
}
  

Luogu P1993 小 K 的农场的更多相关文章

  1. [Luogu] P1993 小K的农场

    题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...

  2. 【luogu P1993 小K的农场】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1993 1.差分约束: 对于a - b <= c 有一条 b-->a 权值为c 对于a - b & ...

  3. P1993 小K的农场

    P1993 小K的农场比较裸的差分约束,只是我判负环的时候sb了... 有负环意味着无解 #include<iostream> #include<cstdio> #includ ...

  4. 洛谷 P1993 小K的农场 解题报告

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  5. P1993 小K的农场 && 差分约束

    首先第一篇讨论的是差分约束系统解的存在 差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统 差分约束解的求解可以转化 ...

  6. 洛谷 P1993 小K的农场

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  7. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  8. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  9. P1993 小K的农场(差分约束)

    小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了 ...

随机推荐

  1. springboot 1.3.5升级1.5.9后 默认使用tomcat 8.5版本 get请求报400 异常信息为 The valid characters are defined in RFC 7230 and RFC 3986

    1.springboot 1.3.5升级1.5.9后 默认使用tomcat 8.5版本而之前用的是tomcat7    get请求报400 异常信息为 The valid characters are ...

  2. JavaScript函数节流(throttle)与函数去抖(debounce)

    对于浏览器窗口大小改变的时候,来动态改变页面元素的大小,可以采用window的resize事件,实现代码: <script type="text/javascript"> ...

  3. cuda中用cublas库做矩阵乘法

    这里矩阵C=A*B,原始文档给的公式是C=alpha*A*B+beta*C,所以这里alpha=1,beta=0. 主要使用cublasSgemm这个函数,这个函数的第二个参数有三种类型,这里CUBL ...

  4. Paxos协议笔记

    对Paxos协议的介绍,可以通过Leslie Lamport的<Paxos Made Simple>展开学习和了解.Paxos算法在允许失败的分布式系统环境下,实现系统一致性.失败的情况有 ...

  5. LeetCode题解之 Implement strStr()

    1.题目描述 2.题目分析 字符串操作,注意边界条件即可. 3.代码 int strStr(string haystack, string needle) { int n = needle.size( ...

  6. LeetCode题解之 Continuous Subarray Sum

    1.题目描述 2.循环计算即可 3.代码 bool checkSubarraySum(vector<int>& nums, int k) { ){ return false ; } ...

  7. 结合 spring 使用阿里 Druid 连接池配置方法

    1.数据源 <!-- 配置数据源 --> <bean name="dataSource" class="com.alibaba.druid.pool.D ...

  8. Oracle EBS OM 创建订单

    DECLARE l_header_rec OE_ORDER_PUB.Header_Rec_Type; l_line_tbl OE_ORDER_PUB.Line_Tbl_Type; l_action_r ...

  9. C# MVC 使用 CKEditor图片上传 提示“不正确的服务器响应”

    重点:看一下你使用的CKEditor版本 过程: 后台需要一款富文本编辑器.经过挑选后,最后选择了FCKEditor 的升级版 CKEditor .在官网下载了4.10.1版本. 经过一番配置后,富文 ...

  10. BZOJ2580:[USACO]Video Game(AC自动机,DP)

    Description Bessie is playing a video game! In the game, the three letters 'A', 'B', and 'C' are the ...