MapReducer
    概述
        是一个分布式的计算框架(编程模型),最初由由谷歌的工程师开发,基于GFS的分布式计算框架。后来Cutting根据《Google Mapreduce》,设计了基于HDFS的Mapreduce分布式计算框架。
        MR框架对于程序员的最大意义在于,不需要掌握分布式计算编程,不需要考虑分布式编程里可能存在的种种难题,比如任务调度和分配、文件逻辑切块、位置追溯、工作。这样,程序员能够把大部分精力放在核心业务层面上,大大简化了分布式程序的开发和调试周期。
    结构
        JobTracker / ResourceManager: 任务调度者,管理多个TaskTracker。ResourceManager是hadoop2.0版本之后引入了yarn,有yarn来管理hadoop之后,jobtracker就被替换成了ResourceManager
        TaskTracker / NodeManager:任务执行者
    Mapper组件
        1.Mapper组件开发方式:写一个类,继承Mapper
        2.Mapper组件的作用是定义 每一个MapTask具体要怎么处理数据。比如一个文件,257MB,会生成3个MapTask。即三个MapTask处理逻辑是一样的只是每个MapTask处理的数据不一样。
    Reduce
        1.reduce组件用于接收mapper组件的输出
        2.redudce第一个泛型类型是reduce的输入key,需要和mapper的输出key类型一致
        3.第二个泛型类型是reduce的输入value,需要和mapper的输出value类型一致
        4.第三个泛型类型是reduce的输出key类型,根据具体业务决定
        5.第四个泛型类型是reduce的输出value类型,根据具体业务决定
        6.reduce收到map的输出,会按相同的key做聚合,形成:key Iterable 形式然后通过reduce方法传给程序员。
        7.reduce方法中的Iterable是一次性的,即遍历一次之后,再遍历,里面就没有数据了。所以,在某些业务场景,会涉及到多次操作此迭代器,处理的方法是:①先创建一个List  ②把Iterable装到List ③多次去使用List即可

序列化机制
    由于集群工作过程中,需要用到RPC操作,所以MR处理的对象必须可以进行序列化/反序列操作。Hadoop利用的是avro实现的序列化和反序列,并且在其基础上提供了便捷的API
要序列化的对象必要实现相关的接口:
Writable接口--WritableComparable

MapReducer的更多相关文章

  1. 基于mapreducer的图算法

    作者现就职阿里巴巴集团1688技术部 引言 周末看到一篇不错的文章"Graph Twiddling in a MapReduce world" ,介绍MapReduce下一些图算法 ...

  2. mapReducer第一个例子WordCount

    mapreducer第一个例子,主要是统计一个目录下各个文件中各个单词出现的次数. mapper package com.mapreduce.wordCount; import java.io.IOE ...

  3. 关于mapreducer 读取hbase数据 存入mysql的实现过程

    mapreducer编程模型是一种八股文的代码逻辑,就以用户行为分析求流存率的作为例子 1.map端来说:必须继承hadoop规定好的mapper类:在读取hbase数据时,已经有现成的接口 Tabl ...

  4. Hadoop之 MapReducer工作过程

    1. 从输入到输出 一个MapReducer作业经过了input,map,combine,reduce,output五个阶段,其中combine阶段并不一定发生,map输出的中间结果被分到reduce ...

  5. mapreducer计算原理

    mapreducer计算原理

  6. MapReducer程序调试技巧

    写过程序分布式代码的人都知道,分布式的程序是比较难以调试的,但是也不是不可以调试,对于Hadoop分布式集群来说,在其上面运行的是mapreduce程序,因此,有时候写好了mapreduce程序之后, ...

  7. MapReducer Counter计数器的使用,Combiner ,Partitioner,Sort,Grop的使用,

    一:Counter计数器的使用 hadoop计数器:可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理. 内置计数器(MapReduce相关.文件系统相关和作业 ...

  8. 关于小改CF协同过滤至MapReducer上的一些心得

    至上次重写ID3 MR版之后,手贱继续尝试CF.之前耳闻CF这两年内非常火,论内某大神也给了单机版(90%代码来自于其).所以想试试能否改到MR上.整体来说,CF本身的机制以相似性为核心,与迭代调用几 ...

  9. mapReducer 去重副的单词

    需求是: 统计输出某目录文件的所有单词,去除重复的单词. mapper阶段正常做map工作,映射. 切割单词. <key,value> -->  <word,nullWrita ...

随机推荐

  1. 【转】利用virtualenv管理Python环境

    virtualenv virtualenv用于创建独立的Python环境,多个python相互独立,互不影响,它能够:1. 在没有权限的情况下安装新套件2. 不同应用可以使用不同的套件版本3. 套件升 ...

  2. my.ini优化mysql数据库性能的十个参数(推荐)

    (1).max_connections:允许的同时客户的数量.增加该值增加 mysqld 要求的文件描述符的数量.这个数字应该增加,否则,你将经常看到 too many connections 错误. ...

  3. 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)

    传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai​,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...

  4. yii2自定义json格式success,error跳转

    /** * ---------------------------------------------- * 操作成功跳转的快捷方法 * @access protected * @param stri ...

  5. springboot 碰到的问题

    1.在springboot 启动报错 ** WARNING ** : Your ApplicationContext is unlikely to start due to a @ComponentS ...

  6. (8)What makes a good life? Lessons from the longest study on happiness

    https://www.ted.com/talks/robert_waldinger_what_makes_a_good_life_lessons_from_the_longest_study_on_ ...

  7. Mybatis-Plus 实战完整学习笔记(五)------insert测试

    一.更新操作探究(3.0.3版本) demo /** * 修改用户 * @throws SQLException */ @Test public void update() throws SQLExc ...

  8. 如何使用git管理代码

    如何使用Git管理代码 Git 是开发人员用来向代码库(msstash)中提交代码或者下载远端代码库中代码的工具. 如何使用git向代码库中提交我们修改后的代码呢? 1.如果是第一次使用git,那么需 ...

  9. eclipse编辑器栏上的路径怎么去掉

    找到这个按钮,点一下就可以了:

  10. iOS笔记之UIKit_UISlider/UIStepper/UISwitch

    - (void)viewDidLoad { [super viewDidLoad]; self.sp = [[UIStepper alloc]init]; //设置计步器的位置 self.sp.cen ...