【BZOJ】4128: Matrix
题解
学习一下矩阵求逆
就是我们考虑这个矩阵
\(AA^{-1} = I\)
我们相当于让\(A\)乘上一个矩阵,变成\(I\)
我们可以利用初等行变换(只能应用初等行变换,或只应用初等列变换)
分三种
1.矩阵的两行互换
2.矩阵的一行加上k倍的另一行
3.矩阵的一行都乘上某个数
其实行变换的本质也可以写成一个矩阵!
我们把\(A\)消成1的过程中,对\(I\)进行同样的操作,就可以得到\(A^{-1}\)了
然后用map代替哈希记录一下就行
似乎这题不用求逆也行。。。
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int MOD,N;
int inv[20005];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return a * b % MOD;
}
struct Matrix {
int f[72][72];
Matrix() {memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
for(int k = 1 ; k <= N ; ++k) {
c.f[i][j] = inc(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
void unit() {
for(int i = 1 ; i <= N ; ++i) f[i][i] = 1;
}
friend Matrix operator ~(Matrix a) {
Matrix b;
b.unit();
for(int i = 1 ; i <= N ; ++i) {
int l;
for(l = i ; l <= N ; ++l) {
if(a.f[l][i]) break;
}
if(l != i) {
for(int j = 1 ; j <= N ; ++j) {
swap(a.f[l][j],a.f[i][j]);
swap(b.f[l][j],b.f[i][j]);
}
}
int t = inv[a.f[i][i]];
if(t) {
for(int j = 1 ; j <= N ; ++j) {
a.f[i][j] = mul(a.f[i][j],t);
b.f[i][j] = mul(b.f[i][j],t);
}
}
for(int j = 1 ; j <= N ; ++j) {
if(j == i) continue;
int t = a.f[j][i];
if(t) {
for(int k = 1 ; k <= N ; ++k) {
a.f[j][k] = inc(a.f[j][k],MOD - mul(t,a.f[i][k]));
b.f[j][k] = inc(b.f[j][k],MOD - mul(t,b.f[i][k]));
}
}
}
}
return b;
}
friend bool operator < (const Matrix &a,const Matrix &b) {
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(a.f[i][j] != b.f[i][j]) return a.f[i][j] < b.f[i][j];
}
}
return false;
}
friend bool operator == (const Matrix &a,const Matrix &b) {
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
if(a.f[i][j] != b.f[i][j]) return false;
}
}
return true;
}
void init() {
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
read(f[i][j]);
}
}
}
}A,B;
map<Matrix ,int> rec;
int BSGS(Matrix a,Matrix b) {
int S = sqrt(MOD);
Matrix t,ia,k;
t.unit();k = b;ia = ~a;
for(int i = 0 ; i < S ; ++i) {
if(t == b && i) return i;
t = t * a;
if(!rec.count(k)) rec[k] = i;
k = k * ia;
}
k = t;
for(int i = 1 ; i * S <= MOD; ++i) {
if(rec.count(k)) return i * S + rec[k];
k = k * t;
}
}
void Solve() {
read(N);read(MOD);
inv[1] = 1;
for(int i = 2 ; i < MOD ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
A.init();B.init();
out(BSGS(A,B));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
【BZOJ】4128: Matrix的更多相关文章
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 【BZOJ】【3083】遥远的国度
树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...
- 【BZOJ】【2434】【NOI2011】阿狸的打字机
AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...
- 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法
整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...
- 【BZOJ】【3170】【TJOI2103】松鼠聚会
切比雪夫距离+曼哈顿距离 题解:http://www.cnblogs.com/zyfzyf/p/4105456.html 其实应该先做这题再做[BZOJ][3210]花神的浇花集会的吧…… 我们发现d ...
随机推荐
- 【刷题】BZOJ 4391 [Usaco2015 dec]High Card Low Card
Description Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of ...
- 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...
- APIO模拟赛(HGOI20180909)
想法:贪心. A.最大高度大的先剪 首先需要知道: 1.每个草最多剪1次 假设有个草剪了2次,显然可以放到最后一次剪得效果和剪2次的效果一样的, 为了少剪那么草最多剪去一次,从而,步数step> ...
- Python 内置函数---map()
描述 map() 实现对一个可迭代对象中的每一个元素都应用一个函数 将被传入的函数作用到一个可迭代对象的每一个元素上,并且返回了包含了所有这些函数调用结果的一个迭代器. 由于map期待传入一个函数并会 ...
- Java基础-零拷贝技术应用案例
Java基础-零拷贝技术应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 零拷贝技术在Hadoop生态圈中很多组件得到应用,典型的比如kafka组件,它就很成功的应用了零拷贝 ...
- linux系统root密码忘了怎么办 三种方法快速找回root密码
linux root密码找回方法一 第1步:在系统进入单用户状态,直接用passwd root去更改. 第2步:用安装光盘引导系统,进行linux rescue状态,将原来/分区挂接上来,作法如下: ...
- Mac下安装zsh(Oh My ZSH)的shell,替代原有的bash
说明:一开始装zsh我是拒绝的,因为这个东西装简单,卸载很难,并且装了之后默认Shell的配置文件不能用了,比如~/.bashrc这些.所以在装的时候要再三考虑好! 官网:http://ohmyz.s ...
- 转---一文读懂 python 的元类
译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉得 ...
- mysql复杂查询(一)
所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...
- dedecms织梦让channelartlist标签支持currentstyle属性
打开include\taglib\channelartlist.lib.php 大约93行 找到: $pv->Fields['typeurl'] = GetOneTypeUrlA($typei ...